传送门


比赛秒写完ABC结果不会D……最后C还fst了qwq

首先可以想到一个约数个数\(^2\)乘上\(K\)的暴力DP,但是显然会被卡

在\(10^{15}\)范围内因数最多的数是\(978217616376000=2^6 \times 3^4 \times 5^3 \times 7^2 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29\),它有\(26880\)个因数

但是不难发现:在我们的答案中参与计算的只有约数个数函数和约数和函数。它们都是传统的积性函数。这给我们一些启示:可以考虑分解质因数然后DP。

考虑对一个数\(x=p^k\)进行\(DP\),设\(f_{i,j}\)表示初始数字为\(p^j\)、做\(i\)轮操作的期望值,转移为\(f_{i,j} = \frac{\sum\limits_{k=0} ^ j f_{i-1,k}}{j+1}\),使用前缀和优化转移。最后将所有质因数得到的答案乘起来就是最后的答案。

#include<bits/stdc++.h>
#define int long long
//This code is written by Itst
using namespace std; inline int read(){
int a = 0;
char c = getchar();
bool f = 0;
while(!isdigit(c) && c != EOF){
if(c == '-')
f = 1;
c = getchar();
}
if(c == EOF)
exit(0);
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return f ? -a : a;
} const int MOD = 1e9 + 7;
int dp[50][10010] , inv[52]; inline int poww(int a , int b){
int times = 1;
while(b){
if(b & 1)
times = times * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return times;
} signed main(){
for(int i = 1 ; i <= 51 ; ++i)
inv[i] = poww(i , MOD - 2);
int N = read() , K = read() , ans = 1;
for(int i = 2 ; i * i <= N ; ++i)
if(N % i == 0){
int cnt = 0;
while(N % i == 0){
++cnt;
N /= i;
}
dp[0][0] = 1;
int tms = i;
for(int j = 1 ; j <= cnt ; ++j , tms = tms * i % MOD)
dp[j][0] = (dp[j - 1][0] + tms) % MOD;
for(int j = 1 ; j <= K ; ++j){
dp[0][j] = 1;
for(int k = 1 ; k <= cnt ; ++k)
dp[k][j] = (dp[k][j - 1] * inv[k + 1] + dp[k - 1][j]) % MOD;
}
ans = ans * (dp[cnt][K] - dp[cnt - 1][K] + MOD) % MOD;
}
if(N != 1)
ans = ans * ((poww(poww(2 , K) , MOD - 2) * (N % MOD) + MOD + 1 - (poww(poww(2 , K) , MOD - 2))) % MOD) % MOD;
cout << ans;
return 0;
}

CF1097D Makoto and a Blackboard 积性函数、概率期望、DP的更多相关文章

  1. D. Makoto and a Blackboard(积性函数+DP)

    题目链接:http://codeforces.com/contest/1097/problem/D 题目大意:给你n和k,每一次可以选取n的因子代替n,然后问你k次操作之后,每个因子的期望. 具体思路 ...

  2. Makoto and a Blackboard CodeForces - 1097D (积性函数dp)

    大意: 初始一个数字$n$, 每次操作随机变为$n$的一个因子, 求$k$次操作后的期望值. 设$n$经过$k$次操作后期望为$f_k(n)$. 就有$f_0(n)=n$, $f_k(n)=\frac ...

  3. CF1097D Makoto and a Blackboard

    题目地址:CF1097D Makoto and a Blackboard 首先考虑 \(n=p^c\) ( \(p\) 为质数)的情况,显然DP: 令 \(f_{i,j}\) 为第 \(i\) 次替换 ...

  4. bzoj2693--莫比乌斯反演+积性函数线性筛

    推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...

  5. hdu1452 Happy 2004(规律+因子和+积性函数)

    Happy 2004 题意:s为2004^x的因子和,求s%29.     (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...

  6. HDU 1452 Happy 2004 (逆元+快速幂+积性函数)

    G - Happy 2004 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Subm ...

  7. spoj 3871. GCD Extreme 欧拉+积性函数

    3871. GCD Extreme Problem code: GCDEX Given the value of N, you will have to find the value of G. Th ...

  8. POJ 2480 Longge's problem (积性函数,欧拉函数)

    题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...

  9. poj 2480 Longge's problem 积性函数

    思路:首先给出几个结论: 1.gcd(a,b)是积性函数: 2.积性函数的和仍然是积性函数: 3.phi(a^b)=a^b-a^(b-1); 记 f(n)=∑gcd(i,n),n=p1^e1*p2^e ...

随机推荐

  1. CO配置步骤清单 - 2004

    SAP配置步骤清单 SAP版本:2004 模块:CO(CCA/CEA/PCA) Note:大洋电机的SAP版本和此文档版本不同,少数配置路径有所变化,请参考使用. No. 配置对象 事务代码 配置内容 ...

  2. SSM环境搭建

    流程 1,maven 依赖 2,spring 配置文件 3,mybatis 配置文件 4,springMVC 配置文件 5,web.xml pom依赖 1,定义版本 <properties> ...

  3. JMeter Sampler之BeanShellSampler的使用

    Sampler之BeanShellSampler的使用 by:授客 QQ:1033553122 欢迎加入软件性能测试交流群:7156436 1.  Bean Shell简介 ·         Bea ...

  4. android.support不统一的问题

    今天supprt28遇到的问题,由于28还是预览版,还存在一些bug 都是因为如果程序内出现不同的,support或者其他外部引用库的多个版本,Gradle在进行合并的时候会使用本地持有的,最高版本的 ...

  5. Java并发编程(八)同步容器

    为了方便编写出线程安全的程序,Java里面提供了一些线程安全类和并发工具,比如:同步容器.并发容器.阻塞队列.Synchronizer(比如CountDownLatch) 一.为什么会出现同步容器? ...

  6. (后端)SQL Server日期时间函数

    转自博客园: 1.获取当前日期GetDate getdate()函数以datetime数据类型的格式返回当前SQLServer服务器所在计算机的日期和时间.其语法格式为getdate().返回值舍入到 ...

  7. Oracle EBS FA 获取累计折旧

    FUNCTION get_ltd_deprn(p_asset_id IN NUMBER, p_book_type_code IN VARCHAR2, p_rate_source_rule IN VAR ...

  8. 在Emacs中使用git操作

    在Emacs中使用git操作 1.安装 magit 插件 2.安装后开始使用 3.使用方法: . 使用 M-x:magit-status 打开当前仓库查看基本信息 .使用 ? 键查看magit命令绑定 ...

  9. PHP 服务器及TP5框架遇到的几个错误

    一.Call to undefined function imagecreatefrompng(): LAMP环境搭建的博客,在提交内容的时候TP5框架报了一个错误,Call to undefined ...

  10. January 26th, 2018 Week 04th Friday

    A great forest is set on fire by a small spark. 最小的火能点着最大的树林. It is just a spark, but it is enough t ...