题目:http://acm.hdu.edu.cn/showproblem.php?pid=2079

题意:同样的学分 ,有多少种组合数,注意同样学分,课程没有区别

思路:两种方法

  1. 背包
  2. 母函数

背包:

注意初始化时dp[0]=1,其他都为0,循环时从学分N开始更新,减到为0,表示成功,组合数加一。

代码:

#include <iostream>
using namespace std;
int main ()
{
int t,n,m,i,j,k,l,a,b,dp[]; //dp记录当前学分的组合数
cin>>t;
while(t--&&cin>>n>>m)
{
for(i=dp[]=;i<;i++)
dp[i]=;
while(m--&&cin>>a>>b)
{
for(i=n;i>=a;i--) //从最终的学分向前更新
for(j=;j<=b;j++) //选择1到b门课
if(j*a<=i) //学分不过界
dp[i]+=dp[i-j*a]; //那就把他加起来
}
cout<<dp[n]<<endl;
}
}

母函数:

母函数的基本知识:

通过例题来了解:

例一:

有1克、2克、3克、4克的砝码各一枚,能称出哪几种重量?每种重量各有几种可能方案?

考虑用母函数来解决这个问题:

我们假设x表示砝码,x的指数表示砝码的重量,这样:

个1克的砝码可以用函数1+1*x^1表示,(1其实应该写为:1*x^0,即1代表重量为2的砝码数量为0个。)

1个2克的砝码可以用函数1+1*x^2表示,

1个3克的砝码可以用函数1+1*x^3表示,

1个4克的砝码可以用函数1+1*x^4表示,

这里的系数表示状态数(方案数)

几种砝码的组合可以称重的情况,可以用以上几个函数的乘积表示:

(1+x)(1+x^2)(1+x^3)(1+x^4)

=(1+x+x^2+x^4)(1+x^3+^4+x^7)

=1 + x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8 + x^9 + x^10

从上面的函数知道:可称出从1克到10克,系数便是方案数。(!!!经典!!!)

例如右端有2^x^5 项,即称出5克的方案有2种:5=3+2=4+1;同样,6=1+2+3=4+2;10=1+2+3+4。

故称出6克的方案数有2种,称出10克的方案数有1种 。

例二:

求用1分、2分、3分的邮票贴出不同数值的方案数:

第一种每种是一个,而这里每种是无限的。

g(x)=(1+x+x^2+···)(1+x^2+x^4···)(1+x^3+x^6+···)

以展开后的x^4为例,其系数为4,即4拆分成1、2、3之和的拆分方案数为4;

即 :4=1+1+1+1=1+1+2=1+3=2+2

这里再引出两个概念"整数拆分"和"拆分数":

所谓整数拆分即把整数分解成若干整数的和(相当于把n个无区别的球放到n个无标志的盒子,盒子允许空,也允许放多于一个球)。  整数拆分成若干整数的和,办法不一,不同拆分法的总数叫做拆分数。

代码实现:

(1+x)(1+x^2)(1+x^3)(1+x^4)

我们要写的代码就是要计算上面的函数式相乘之后的结果,数组c1[]存函数G(x)的每一项系数。代码的实现方式是:通过循环,每次循环把前两个括号相乘,得到新的第一个括号,一直把所有的括号都乘完。

例如:(1+x)(1+x^2)(1+x^3)(1+x^4)

=(1+x+x^2+x^3)(1+x^3)(1+x^4)

这一步就实现了前两个括号融合成一个括号。

例二代码:

每种种类个数无限为例,给出模板:

#include <iostream>
using namespace std; const int _max = ;
// c1是保存各项质量砝码可以组合的数目
// c2是中间量,保存没一次的情况
int c1[_max], c2[_max];
int main()
{
int nNum; //你想用已有的面值组成nNum大小的面值
int i, j, k; //该代码的前提是假设所有面值为1、2、3、4、5.....的连续数,即下面的 i
//数量无限
while(cin >> nNum)
{
for(i=; i<=nNum; ++i) //此时的nNum是第一个括号的所有项个数 // ---- ①
{
c1[i] = ;
c2[i] = ;
}
for(i=; i<=nNum; ++i) //nNum 括号个数 // ----- ②
{ for(j=; j<=nNum; ++j) //j是第一个括号里的每一项x^j的指数j
for(k=; k+j<=nNum; k+=i) // k是第二个括号的每一项x^k的指数
{
c2[j+k] += c1[j]; //目前的第一括号与第二括号两两相乘
//由于第二括号的系数全为1,相乘后的系数就是c1[j],累加即可
}
for(j=; j<=nNum; ++j) // 把c2中的值给c1,并把c2清0
{
c1[j] = c2[j];
c2[j] = ;
}
}
cout << c1[nNum] << endl;//输出能组成nNum大小的方案数
}
return ;
}

本题中每个学分的课程有限,代码模板又不一样:

高效的母函数模板

https://blog.csdn.net/xiaofei_it/article/details/17042651

直接套模板就好:

代码:

#include <iostream>
#include <cstring>
using namespace std;
#define min(a,b) ((a)<(b)?(a):(b))
int T,N,K,n[],v[],a[],b[],i,j,k,last,last2;
int main()
{
cin>>T;
while ((T--)!=)
{
cin>>N>>K;
for (i=;i<K;i++)
cin>>v[i]>>n[i];
a[]=;
last=;
for (i=;i<K;i++)
{
last2=min(last+n[i]*v[i],N);
memset(b,,sizeof(int)*(last2+));
for (j=;j<=n[i]&&j*v[i]<=last2;j++)
for (k=;k<=last&&k+j*v[i]<=last2;k++)
b[k+j*v[i]]+=a[k];
memcpy(a,b,sizeof(int)*(last2+));
last=last2;
}
cout<<a[N]<<endl;
}
return ;
}

注意数组的初始化

2079 ACM 选课时间 背包 或 母函数的更多相关文章

  1. HDU 2079 选课时间(普通型 数量有限 母函数)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2079 选课时间(题目已修改,注意读题) Time Limit:1000MS     Memory Li ...

  2. HDOJ 2079 选课时间(母函数)

    选课时间(题目已修改,注意读题) Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. hdu 2079 选课时间

    hdu 2079 选课时间 题意:选的学分总和为n,并且学分为a的课有b种,总共有K(1<=k<=8)种学分不同的课,并且要选的学分最多为40:问选课方案有多少种?(学分相同的课即认为相同 ...

  4. HDUOJ--2079选课时间(题目已修改,注意读题)

    选课时间(题目已修改,注意读题) Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. 杭电ACM hdu 2079 选课时间 (模板)

    Problem Description 又到了选课的时间了,xhd看着选课表发呆,为了想让下一学期好过点,他想知道学n个学分共有多少组合.你来帮帮他吧.(xhd认为一样学分的课没区别) Input输入 ...

  6. hdu 2079 选课时间_母函数

    题意:需要学够n学分,有k个情况(x学分,y个相同学分的课) 解法:套母函数模板 #include <iostream> #include<cstdio> using name ...

  7. HDU 2079 选课时间(母函数模板题)

    链接:传送门 思路:母函数模板题 /************************************************************************* > Fil ...

  8. hdu 2079 选课时间(题目已改动,注意读题) (母函数)

    代码: #include<cstdio> #include<cstring> using namespace std; int main() { int t; scanf(&q ...

  9. HDU2079选课时间(母函数)

    母函数的简单应用http://acm.hdu.edu.cn/showproblem.php?pid=2079 介绍见另一篇随笔HDU1028Ignatius and the Princess III( ...

随机推荐

  1. Python列表、元组、字典和集合的区别

    数据结构 是否可变 是否重复 是否有序 定义符号 列表(list) 可变 可重复 有序 [] 元组(tuple) 不可变 可重复 有序 () 字典(dictionary) 可变 可重复 无序 {key ...

  2. Windows Internals 笔记——错误处理

    1.Windows函数检测到错误时,会使用一种名为“线程本地存储区”的机制将相应的错误代码与“主调线程”关联到一起.这种机制使得不同的线程能独立运行,不会出现相互干扰对方的错误代码的情况. 2.Get ...

  3. 论文阅读笔记十二:Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation(DeepLabv3+)(CVPR2018)

    论文链接:https://arxiv.org/abs/1802.02611 tensorflow 官方实现: https: //github.com/tensorflow/models/tree/ma ...

  4. Expected one result (or null) to be returned by selectOne(), but found: 3

    Expected one result (or null) to be returned by selectOne(), but found: 3 返回应该是对象但是给的是list

  5. error: <item> inner element must either be a resource reference or empty.

    FAQ: Android resource compilation failedOutput: /home/cmm/code/AndroidHttpCapture/app/build/intermed ...

  6. python---通过递归和动态规划策略解决找零钱问题

    也是常见套路. # coding = utf-8 def rec_mc(coin_value_list, change, know_results): min_coins = change if ch ...

  7. Eclipse+Maven整合开发Java项目(二)➣webapp3.0以上的Maven项目

    概述 Eclipse集成Maven插件,新建maven-archetype-webapp项目的时候,采用的webapp的版本较低,默认是2.3,有些时候,我们希望升级Webapp的版本到3.0(Tom ...

  8. Java基础知识➣序列化与反序列化(四)

    概述 Java 提供了一种对象序列化的机制,该机制中,一个对象可以被表示为一个字节序列,该字节序列包括该对象的数据.有关对象的类型的信息和存储在对象中数据的类型. 将序列化对象写入文件之后,可以从文件 ...

  9. Directory 类

    Directory 类 该类公开,主要用于创建.移动和枚举通过目录和子目录的静态方法.此类不能被继承.       命名空间: System.IO;       程序集: mscorlib(在 msc ...

  10. flink--DateSet开发--简单入门

    开发流程 1. 获得一个execution environment, 2. 加载/创建初始数据, 3. 指定这些数据的转换, 4. 指定将计算结果放在哪里, 5. 触发程序执行 例子: object ...