Faster-RCNN 算法解读(转)
论文:《Faster R-CNN: Towards Real-Time ObjectDetection with Region Proposal Networks》
摘要:算法主要解决两个问题:
1、提出区域建议网络RPN,快速生成候选区域;
2、通过交替训练,使RPN和Fast-RCNN网络共享参数。
一、 RPN网络结构
RPN网络的作用是输入一张图像,输出一批矩形候选区域,类似于以往目标检测中的Selective Search一步。网络结构是基于卷积神经网络,但输出包含二类softmax和bbox回归的多任务模型。网络结果如下(以ZF网络为参考模型):
其中,虚线以上是ZF网络最后一层卷积层前的结构,虚线以下是RPN网络特有的结构。首先是3*3的卷积,然后通过1*1卷积输出分为两路,其中一路输出是目标和非目标的概率,另一路输出box相关的四个参数,包括box的中心坐标x和y,box宽w和长h。
(至于之前为什么要用3*3的卷积核,我觉得是和感受野大小相对应的。在原来的ZF模型中,3*3卷积核对应map比例是3/13,相当于在型如1000*600的图片中采用180左右的感受野。对于1000*600的图片中大部分目标而言,这个大小的感受野是比较合适的吧。)
从卷积运算本身而言,卷积相当于滑窗。假如输入图像是1000*600,则经过了几次stride后,map大小缩小了16倍,最后一层卷积层输出大约为60*40大小,那么相当于用3*3的窗口滑窗(注意有padding),对于左边一支路而言,输出18个通道,每个通道map大小仍为60*40,代表每个滑窗中心对应感受野内存在目标与否的概率。右支路同理。
二、 anchor机制
anchor是rpn网络的核心。刚刚说到,需要确定每个滑窗中心对应感受野内存在目标与否。由于目标大小和长宽比例不一,需要多个尺度的窗。Anchor即给出一个基准窗大小,按照倍数和长宽比例得到不同大小的窗。例如论文中基准窗大小为16,给了(8、16、32)三种倍数和(0.5、1、2)三种比例,这样能够得到一共9种尺度的anchor,如图(摘自http://blog.csdn.net/shenxiaolu1984/article/details/51152614)。
因此,在对60*40的map进行滑窗时,以中心像素为基点构造9种anchor映射到原来的1000*600图像中,映射比例为16倍。那么总共可以得到60*40*9大约2万个anchor。
三、 训练
RPN网络训练,那么就涉及ground truth和loss function的问题。对于左支路,ground truth为anchor是否为目标,用0/1表示。那么怎么判定一个anchor内是否有目标呢?论文中采用了这样的规则:1)假如某anchor与任一目标区域的IoU最大,则该anchor判定为有目标;2)假如某anchor与任一目标区域的IoU>0.7,则判定为有目标;3)假如某anchor与任一目标区域的IoU<0.3,则判定为背景。所谓IoU,就是预测box和真实box的覆盖率,其值等于两个box的交集除以两个box的并集。其它的anchor不参与训练。
于是,代价函数定义为:
代价函数分为两部分,对应着RPN两条支路,即目标与否的分类误差和bbox的回归误差,其中Leg(ti,ti*) = R(ti-ti*)采用在Fast-RCNN中提出的平滑L1函数,作者认为其比L2形式的误差更容易调节学习率。注意到回归误差中Leg与pi相乘,因此bbox回归只对包含目标的anchor计算误差。也就是说,如果anchor不包含目标,box输出位置无所谓。所以对于bbox的groundtruth,只考虑判定为有目标的anchor,并将其标注的坐标作为ground truth。此外,计算bbox误差时,不是比较四个角的坐标,而是tx,ty,tw,th,具体计算如下:
四、 联合训练
作者采用四步训练法:
1) 单独训练RPN网络,网络参数由预训练模型载入;
2) 单独训练Fast-RCNN网络,将第一步RPN的输出候选区域作为检测网络的输入。具体而言,RPN输出一个候选框,通过候选框截取原图像,并将截取后的图像通过几次conv-pool,然后再通过roi-pooling和fc再输出两条支路,一条是目标分类softmax,另一条是bbox回归。截止到现在,两个网络并没有共享参数,只是分开训练了;
3) 再次训练RPN,此时固定网络公共部分的参数,只更新RPN独有部分的参数;
4) 那RPN的结果再次微调Fast-RCNN网络,固定网络公共部分的参数,只更新Fast-RCNN独有部分的参数。
至此,网络训练结束,网络集检测-识别于一体,测试阶段流程图如下:
有一些实现细节,比如RPN网络得到的大约2万个anchor不是都直接给Fast-RCNN,因为有很多重叠的框。文章通过非极大值抑制的方法,设定IoU为0.7的阈值,即仅保留覆盖率不超过0.7的局部最大分数的box(粗筛)。最后留下大约2000个anchor,然后再取前N个box(比如300个)给Fast-RCNN。Fast-RCNN将输出300个判定类别及其box,对类别分数采用阈值为0.3的非极大值抑制(精筛),并仅取分数大于某个分数的目标结果(比如,只取分数60分以上的结果)。
Faster-RCNN 算法解读(转)的更多相关文章
- 第三十一节,目标检测算法之 Faster R-CNN算法详解
Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal network ...
- 【目标检测】Faster RCNN算法详解
Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal network ...
- 目标检测算法之Faster R-CNN算法详解
Fast R-CNN存在的问题:选择性搜索,非常耗时. 解决:加入一个提取边缘的神经网络,将候选框的选取交给神经网络. 在Fast R-CNN中引入Region Proposal Network(RP ...
- faster rcnn算法及源码及论文解析相关博客
1. 通过代码理解faster-RCNN中的RPN http://blog.csdn.net/happyflyy/article/details/54917514 2. faster rcnn详解 R ...
- Faster RCNN算法训练代码解析(3)
四个层的forward函数分析: RoIDataLayer:读数据,随机打乱等 AnchorTargetLayer:输出所有anchors(这里分析这个) ProposalLayer:用产生的anch ...
- Faster RCNN算法训练代码解析(1)
这周看完faster-rcnn后,应该对其源码进行一个解析,以便后面的使用. 那首先直接先主函数出发py-faster-rcnn/tools/train_faster_rcnn_alt_opt.py ...
- Faster RCNN算法demo代码解析
一. Faster-RCNN代码解释 先看看代码结构: Data: This directory holds (after you download them): Caffe models pre-t ...
- Faster RCNN算法训练代码解析(2)
接着上篇的博客,我们获取imdb和roidb的数据后,就可以搭建网络进行训练了. 我们回到trian_rpn()函数里面,此时运行完了roidb, imdb = get_roidb(imdb_name ...
- 论文阅读笔记二十七:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(CVPR 2016)
论文源址:https://arxiv.org/abs/1506.01497 tensorflow代码:https://github.com/endernewton/tf-faster-rcnn 室友对 ...
- 目标检测-Faster R-CNN
[目标检测]Faster RCNN算法详解 Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with r ...
随机推荐
- 2017-9-8-visio制作lcd液晶背景
看到别人的帖子有用visio做tft的背景图片的,十分感兴趣,电脑上也有visio,搞起.. 按照下图找到合适的模板(visio2010版本,其他版本应该会略有不同). 拖动界面左侧的各种丰富的小插 ...
- 【开源GPS追踪】 之 硬件开源
根据设定目标: 使用GPS 采集经纬度,然后通过GPRS模块/wifi 发送到服务器显示,WIFI不常有,所有就使用GPRS模块! 对于GPS模块,没有特殊要求,只要输出格式符合NMEA协议即可,为了 ...
- [CC-CLPOINT]Optimal Point
[CC-CLPOINT]Optimal Point 题目大意: 在\(k(k\le5)\)维空间中,如果点\(X\)的坐标为\((x_1,x_2,\ldots,x_k)\),点\(Y\)的坐标为\(( ...
- Usaco 4.3.1 Buy Low, Buy Lower 逢低吸纳详细解题报告
问题描述: "逢低吸纳"是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀: "逢低吸纳,越低越买" 这句话的意思是:每次你购买股票时的股 ...
- Ubuntu安装软件时提示依赖项配置错误
在终端中使用dpkg安装软件时有时会出现依赖项配置错误的情况, 解决方法是使用指令 sudo apt-get install -f 安装Ubuntu 16.04新系统不再配有的缺失依赖项,之后再次输入 ...
- 【NOI2015】【BZOJ4196】软件包管理器 - 题解
Description Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖( ...
- vim查找格式
使用了VIM这么久,却一直无法牢记一些基本的操作指令.今天查找一个关键字时,想不起来怎么查找“下一个”,于是google之并解决,顺便把有用的都贴过来罢. 查找指令:/xxx 往下查找?xxx 往上 ...
- poj2385 Apple Catching(dp状态转移方程推导)
https://vjudge.net/problem/POJ-2385 猛刷简单dp的第一天的第一题. 状态:dp[i][j]表示第i秒移动j次所得的最大苹果数.关键要想到移动j次,根据j的奇偶判断人 ...
- shiro-过滤器
http://shiro.apache.org/authorization.html#Authorization-PermissionGranularity shiro默认的过滤器 Shiro内置了很 ...
- 使用python实现深度神经网络 3(转)
使用python实现深度神经网络 3 快速计算梯度的魔法--反向传播算法 快速计算梯度的魔法--反向传播算法 一.实验介绍 1.1 实验内容 第一次实验最后我们说了,我们已经学习了深度学习中的模型mo ...