gym 101081 gym F. Auction of Services 最小生成树+倍增LCA
2.0 s
256 MB
standard input
standard output
It is becoming more common to use strategies based on social networks for shopping, contract services, arrange meetings, etc. Such strategies often involve interesting mathematical knowledge, like Game Theory. A new trend has appeared, the use of social networks to carry out virtual auctions to contract services. The service providers have agreements between them that enforce a service to cost a predetermine value. The prices a company charges, when it works in collaboration with each of its partners, can be very different, since many factors such as location, previous partnerships, tradition, etc. influence the convenience of a particular partnership.
In this problem you want to estimate the price of a service given by a couple of service providers. It is already known the price of the service given by some companies that have an agreement to work together. Furthermore, if we have two companies A and B, we can contract a service (offered by them) using a chain of companies c1, c2, ... ck, such that
- ci and ci + 1 have an agreement, for i = 1, ..., k - 1,
- c1 = A and ck = B.
Also, we know that the price to contract such chain of companies, is the highest price of a service given by a pair of adjacent companies in that chain. That's the power of social networks!
In the previous figure, despite the fact that the price of the agreement between A and C is 13, the best price (in the network that links these companies) is 9, using the agreements through B.
Your task is to help these virtual auctions. The person interested in contracting a certain service chooses a pair of companies he want to contract, and you need to make a program that answers the minimum possible price of that service.
The first line contains two integers N and M, the number of companies and agreements, respectively. The companies are numbered from 1 to N. Each of the following M lines contains three integers, the ith contains Ai, Bi and Ci, indicating that there is an agreement between companies Ai and Bi whose price is Ci. Each pair of companies has at most one agreement. It is guaranteed it is possible to contract a service between any pair of companies.
The next line contains an integer Q, the number of queries. The following Q lines contain a pair of integers representing the companies which we want to contract.
Limits
- 2 ≤ N ≤ 105
- 1 ≤ M ≤ 2·105
- 1 ≤ Ai ≠ Bi ≤ N
- 1 ≤ Ci ≤ 106
- 1 ≤ Q ≤ 2·105
Print Q integers representing the price of the service for each query.
4 4
1 2 6
1 3 1
2 4 2
3 4 2
2
1 2
1 4
2
2
4 4
1 2 1
2 3 7
2 4 3
3 4 4
4
1 3
1 4
3 2
4 2
4
3
4
3
题意:无向带权图,找一个点到另一个点的边权最大值最小;
思路:最小生成树:要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此另一个目标是要使铺设光缆的总费用最低。这就需要找到带权的最小生成树。
显然先构造一颗最小生成树,然后类似LCA的求法求两个点之间的最大值;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<bitset>
#include<set>
#include<map>
#include<time.h>
using namespace std;
#define LL long long
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e5+,M=2e6+,inf=1e9+;
const LL INF=1e18+,mod=,MOD=;
const double eps=1e-,pi=(*atan(1.0));
struct is
{
int u,v,w;
bool operator <(const is &c)const
{
return w<c.w;
}
}a[N<<];
int faT[N];
int Find(int x)
{
return x==faT[x]?x:faT[x]=Find(faT[x]);
}
vector<pair<int,int> >edge[N];
int fa[N][],ma[N][],deep[N];
void dfs(int u,int fat)
{
for (int i=; i<= ;i++) {
if(deep[u]<(<<i)) break;
fa[u][i] = fa[fa[u][i-]][i-];
ma[u][i] = max(ma[fa[u][i-]][i-],ma[u][i-]);
}
for (int i=;i<edge[u].size();i++)
{
int v=edge[u][i].first;
int w=edge[u][i].second;
if(v==fat) continue;
deep[v]=deep[u]+;
fa[v][]=u;
ma[v][]=w;
dfs(v,u);
}
}
int RMQ_LCA(int x,int y) {
if(deep[x]<deep[y]) swap(x,y);
int d=deep[x]-deep[y],ans=;
for (int i=; i<= ;i++)
if((<<i)&d) ans=max(ans,ma[x][i]),x=fa[x][i];
for (int i=; i>= ;i--) {
if(fa[x][i]!=fa[y][i]) {
ans=max(ans,ma[x][i]),ans=max(ans,ma[y][i]);
x=fa[x][i];y=fa[y][i];
}
}
if(x==y) return ans;
else return max(ans,max(ma[y][],ma[x][]));
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
faT[i]=i;
for(int i=;i<=m;i++)
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
sort(a+,a++m);
for(int i=;i<=m;i++)
{
int x=Find(a[i].u);
int z=Find(a[i].v);
if(x!=z)
{
edge[a[i].u].push_back(make_pair(a[i].v,a[i].w));
edge[a[i].v].push_back(make_pair(a[i].u,a[i].w));
faT[x]=z;
}
}
dfs(,);
int q;
scanf("%d",&q);
while(q--)
{
int u,v;
scanf("%d%d",&u,&v);
printf("%d\n",RMQ_LCA(u,v));
}
return ;
}
gym 101081 gym F. Auction of Services 最小生成树+倍增LCA的更多相关文章
- 【CodeForces】827 D. Best Edge Weight 最小生成树+倍增LCA+并查集
[题目]D. Best Edge Weight [题意]给定n个点m条边的带边权无向连通图,对每条边求最大边权,满足其他边权不变的前提下图的任意最小生成树都经过它.n,m<=2*10^5,1&l ...
- 【bzoj3732】Network 最小生成树+倍增LCA
题目描述 给你N个点的无向图 (1 <= N <= 15,000),记为:1…N. 图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_j ( 1 & ...
- 【bzoj4242】水壶 BFS+最小生成树+倍增LCA
题目描述 JOI君所居住的IOI市以一年四季都十分炎热著称. IOI市是一个被分成纵H*横W块区域的长方形,每个区域都是建筑物.原野.墙壁之一.建筑物的区域有P个,编号为1...P. JOI君只能进入 ...
- 训练指南 UVA - 11354(最小生成树 + 倍增LCA)
layout: post title: 训练指南 UVA - 11354(最小生成树 + 倍增LCA) author: "luowentaoaa" catalog: true ma ...
- BFS+最小生成树+倍增+LCA【bzoj】4242 水壶
[bzoj4242 水壶] Description JOI君所居住的IOI市以一年四季都十分炎热著称. IOI市是一个被分成纵H*横W块区域的长方形,每个区域都是建筑物.原野.墙壁之一.建筑物的区域有 ...
- BZOJ 3732 Network —— 最小生成树 + 倍增LCA
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3732 Description 给你N个点的无向图 (1 <= N <= 15, ...
- codeforce 378 div 2 F —— Drivers Dissatisfaction (最小生成树,LCA,倍增)
官方题解: If you choose any n - 1 roads then price of reducing overall dissatisfaction is equal to min(c ...
- LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA
非常好的一道图论问题. 显然,我们要求城市间的最小生成树,然后查询路径最大值. 然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围. 显然,如果两个城市的管辖范围没有交集的话 ...
- codevs 1519 过路费 最小生成树+倍增
/*codevs 1519 过路费 最小生成树+倍增*/ #include<iostream> #include<cstdio> #include<cstring> ...
随机推荐
- ios学习--iphone 实现下拉菜单
原文地址:ios学习--iphone 实现下拉菜单作者:sdglyuan00 #import @interface DropDown1 : UIView <</span>UITabl ...
- vue的事件对象,方法执行
方法都写在methods重,有两种写法:1. getMsg:function(){ alert(); }, 这种写法就是对象中的方法 2. getMsg1(){ alert(); }注意没有func ...
- transition:all .2s
all属性实际上是所有CSS属性的缩写,表示,所有的CSS属性都怎样怎样.
- (4.8)mysql备份还原——binlog查看工具之show binlog的使用
(4.8)mysql备份还原——binlog查看工具之mysqlbinlog及show binlog的使用 关键词:show binlog,mysql binlog查看,二进制文件查看,binlog查 ...
- JDK 1.8源码阅读 TreeMap
一,前言 TreeMap:基于红黑树实现的,TreeMap是有序的. 二,TreeMap结构 2.1 红黑树结构 红黑树又称红-黑二叉树,它首先是一颗二叉树,它具体二叉树所有的特性.同时红黑树更是一颗 ...
- mysql 游标嵌套
BEGIN -- 开始存储过程 declare my_ID varchar(32); -- 线路iddeclare my_SpecialLineName varchar(50); -- 线路名称 de ...
- linux----------今天又遇到一个奇葩的问题,就是linux文件的权限已经是777了但是还是没有写入权限,按照下面的命令就解决了
查看SELinux状态: 1./usr/sbin/sestatus -v ##如果SELinux status参数为enabled即为开启状态 SELinux status: ...
- CentOS 7 nginx+tomcat9 session处理方案之session保持
Session保持(会话保持)是我们见到最多的名词之一,通过会话保持,负载均衡进行请求分发的时候保证每个客户端固定的访问到后端的同一台应用服务器.会话保持方案在所有的负载均衡都有对应的实现.而且这是在 ...
- 20155228 2017-11-19 实现mypwd(选做,加分)
20155228 2017-11-19 实现mypwd(选做,加分) 题目和要求 学习pwd命令 研究pwd实现需要的系统调用(man -k; grep),写出伪代码 实现mypwd 测试mypwd ...
- kylin对接hive实现实时查询
前提: 安装kylin之前,需要安装hadoop2.0.hbase.hive,并且对版本有要求,可以参照官网链接 http://kylin.apache.org/cn/docs/install/in ...