本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

Description

You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.

We will ask you to perfrom some instructions of the following form:

  • CHANGE i ti : change the cost of the i-th edge to ti
    or
  • QUERY a b : ask for the maximum edge cost on the path from node a to node b

Input

The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.

For each test case:

  • In the first line there is an integer N (N <= 10000),
  • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
  • The next lines contain instructions "CHANGE i ti" or "QUERY a b",
  • The end of each test case is signified by the string "DONE".

There is one blank line between successive tests.

Output

For each "QUERY" operation, write one integer representing its result.

Example

Input:
1 3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE Output:
1
3 正解:树链剖分
解题报告:
  链剖裸题,注意清空数组。
//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
using namespace std;
#define lc root<<1
#define rc root<<1|1
typedef long long LL;
const int MAXN = 20011;
const int MAXM = 40011;
const int inf = (1<<30);
int n,ecnt,first[MAXN],to[MAXM],next[MAXM],w[MAXM],father[MAXN],quan[MAXN],quanv[MAXN];
int deep[MAXN],id[MAXN],pre[MAXN],son[MAXN],size[MAXN],top[MAXN],match[MAXN],ans,ql,qr,CC;
char ch[12];
struct node{ int maxl; }a[MAXN*3];
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void dfs(int x,int fa){
size[x]=1;
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(v==fa) continue;
father[v]=x; deep[v]=deep[x]+1; quanv[v]=(i+1)>>1;
quan[v]=w[i]; match[(i+1)>>1]=v;
dfs(v,x); size[x]+=size[v];
if(size[v]>=size[son[x]]) son[x]=v;
}
} inline void dfs2(int x,int fa){
id[x]=++ecnt; pre[ecnt]=x;
if(son[x]) top[son[x]]=top[x],dfs2(son[x],x);
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(v==fa || v==son[x]) continue;
top[v]=v; dfs2(v,x);
}
} inline void build(int root,int l,int r){
if(l==r) { a[root].maxl=quan[pre[l]]; return ; }
int mid=(l+r)>>1; build(lc,l,mid); build(rc,mid+1,r);
a[root].maxl=max(a[lc].maxl,a[rc].maxl);
} inline void query(int root,int l,int r){
if(ql<=l && r<=qr) { ans=max(ans,a[root].maxl); return ; }
int mid=(l+r)>>1; if(ql<=mid) query(lc,l,mid); if(qr>mid) query(rc,mid+1,r);
} inline void lca(int x,int y){
ans=-inf; int f1=top[x],f2=top[y];
while(f1!=f2) {
if(deep[f1]<deep[f2]) swap(f1,f2),swap(x,y);
ql=id[f1]; qr=id[x]; query(1,1,n);
x=father[f1]; f1=top[x];
}
if(deep[x]<deep[y]) swap(x,y);
ql=id[son[y]]; qr=id[x];
if(ql<=qr) query(1,1,n);
printf("%d\n",ans);
} inline void update(int root,int l,int r){
if(l==r) { a[root].maxl=CC; return ; }
int mid=(l+r)>>1;
if(ql<=mid) update(lc,l,mid); else update(rc,mid+1,r);
a[root].maxl=max(a[lc].maxl,a[rc].maxl);
} inline void work(){
int T=getint(); int x,y,z;
while(T--) {
n=getint(); ecnt=0; memset(first,0,sizeof(first));
memset(son,0,sizeof(son));
for(int i=1;i<n;i++) {
x=getint(); y=getint(); z=getint();
next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; w[ecnt]=z;
next[++ecnt]=first[y]; first[y]=ecnt; to[ecnt]=x; w[ecnt]=z;
}
deep[1]=1; dfs(1,0);
ecnt=0; top[1]=1; dfs2(1,0);
build(1,1,n);
while(1) {
scanf("%s",ch); if(ch[0]=='D') break;
if(ch[0]=='Q') {
x=getint(); y=getint();
lca(x,y);
}
else {
x=getint(); y=getint(); CC=y;
z=match[x];//边对应的连接的儿子节点
quan[z]=y; ql=id[z]; update(1,1,n);
}
}
}
} int main()
{
work();
return 0;
}

  

SPOJ375 QTREE - Query on a tree的更多相关文章

  1. [SPOJ375]QTREE - Query on a tree【树链剖分】

    题目描述 给你一棵树,两种操作. 修改边权,查找边权的最大值. 分析 我们都知道,树链剖分能够维护点权. 而且每一条边只有一个,且唯一对应一个儿子节点,那么就把信息放到这个儿子节点上. 注意,lca的 ...

  2. QTREE - Query on a tree

    QTREE - Query on a tree 题目链接:http://www.spoj.com/problems/QTREE/ 参考博客:http://blog.sina.com.cn/s/blog ...

  3. SPOJ QTREE Query on a tree 树链剖分+线段树

    题目链接:http://www.spoj.com/problems/QTREE/en/ QTREE - Query on a tree #tree You are given a tree (an a ...

  4. SP375 QTREE - Query on a tree (树剖)

    题目 SP375 QTREE - Query on a tree 解析 也就是个蓝题,因为比较长 树剖裸题(基本上),单点修改,链上查询. 顺便来说一下链上操作时如何将边上的操作转化为点上的操作: 可 ...

  5. SPOJ VJudge QTREE - Query on a tree

    Query on a tree Time Limit: 851MS   Memory Limit: 1572864KB   64bit IO Format: %lld & %llu Submi ...

  6. spoj QTREE - Query on a tree(树链剖分+线段树单点更新,区间查询)

    传送门:Problem QTREE https://www.cnblogs.com/violet-acmer/p/9711441.html 题解: 树链剖分的模板题,看代码比看文字解析理解来的快~~~ ...

  7. SPOJ QTREE Query on a tree --树链剖分

    题意:给一棵树,每次更新某条边或者查询u->v路径上的边权最大值. 解法:做过上一题,这题就没太大问题了,以终点的标号作为边的标号,因为dfs只能给点分配位置,而一棵树每条树边的终点只有一个. ...

  8. SP375 QTREE - Query on a tree

    题意大意 给定\(n\)个点的树,边按输入顺序编号为\(1,2,...n-1\),要求作以下操作: CHANGE \(i\) \(t_i\) 将第\(i\)条边权值改为\(t_i\),QUERY \( ...

  9. SPOJ QTREE Query on a tree VI

    You are given a tree (an acyclic undirected connected graph) with n nodes. The tree nodes are number ...

随机推荐

  1. ZOJ1119(SPF)

    题目链接:传送门 题目大意:一副无向图,问有多少个节点满足删除该节点后图不连通,对于每个满足条件的节点,输出节点编号及删除节点将图分为几个连通块.若没有节点满足则输出No SPF nodes 题目思路 ...

  2. 【BZOJ3124】[Sdoi2013]直径 树形DP(不用结论)

    [BZOJ3124][Sdoi2013]直径 Description 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节 ...

  3. jQuery之获取checkbox选中的值

    <mce:script src="jquery.js" mce_src="jquery.js"></mce:script><!-- ...

  4. 如何查看l操作系统是否开启rpc服务

    linux操作系统 在linux 5.X以及下的版本你可以通过service portmap status命令查看rpc是否启动.如果提示running,表示正在运行:如果提示stop就是关闭了.如果 ...

  5. Apache JServ Protocol (AJP)

    The Apache JServ Protocol (AJP) is a binary protocol that can proxy inbound requests from a web serv ...

  6. Python学习笔记3_数据类型

    Python数据类型:数字.字符串.列表.元祖.字典 一.数字类型:(整型.长整型.浮点型.复数型) 1.整型(int):表示范围-2,147,483,648到2,147,483,647 2.长整型( ...

  7. Django CSRF 原理分析

    原文链接: https://blog.csdn.net/u011715678/article/details/48752873 参考链接:https://blog.csdn.net/clark_fit ...

  8. Python进阶(3)_进程与线程中的lock(线程中互斥锁、递归锁、信号量、Event对象、队列queue)

    1.同步锁 (Lock) 当全局资源(counter)被抢占的情况,问题产生的原因就是没有控制多个线程对同一资源的访问,对数据造成破坏,使得线程运行的结果不可预期.这种现象称为“线程不安全”.在开发过 ...

  9. Loadrunder场景设计篇——手工场景设计

    概述 通过选择需要运行的脚本,分配运行脚本的负载生成器,在脚本中分配Vuser来建立手工场景 手工场景就是自行设置虚拟用户的变化,主要是通过设计用户的添加和减少过程,来模拟真实的用户请求模型,完成负载 ...

  10. 请求json和xml数据时的方式

    当请求xml数据时,直接通过NSMutableData接收后解析, NSURL *url = [NSURL URLWithString:PATH]; _receiveData = [[NSMutabl ...