嗯……这题是一个网络流。

加入的边为u,v长度L

则所有长度大于L的边不能使得u,v连通

求个最小割即可。小于同理

两次最小割结果相加。

#include<bits/stdc++.h>
#define N 200005
#define M 1000005
#define inf 1000000007
using namespace std;
int tu,tv,tval,n,m,cnt,ans,tot=,head[N],s,t;
struct Edge1{int u,v,w;}T[N];
struct Edge2{int u,v,f,next;}G[M];
inline void addedge(int u,int v,int f){
G[tot].u=u;G[tot].v=v;G[tot].f=f;G[tot].next=head[u];head[u]=tot++;
G[tot].u=v;G[tot].v=u;G[tot].f=f;G[tot].next=head[v];head[v]=tot++;
}
inline bool operator<(Edge1 a,Edge1 b){return a.w<b.w;}
int level[N];
bool bfs(int s,int t){
memset(level,,sizeof(level));queue<int>q;
q.push(s);level[s]=;
while(!q.empty()){
int u=q.front();q.pop();
if(u==t)return ;
for(int i=head[u];~i;i=G[i].next){
int v=G[i].v,f=G[i].f;
if(f&&!level[v])level[v]=level[u]+,q.push(v);
}
}
return ;
}
int dfs(int u,int maxf,int t){
if(u==t)return maxf;int rat=;
for(int i=head[u];~i;i=G[i].next){
int v=G[i].v,f=G[i].f;
if(f&&level[v]==level[u]+){
f=dfs(v,min(maxf-rat,f),t);
rat+=f;G[i].f-=f;G[i^].f+=f;
}
}
if(!rat)level[u]=inf;
return rat;
}
inline int dinic(int s,int t){
int ans=;
while(bfs(s,t))ans+=dfs(s,inf,t);
return ans;
}
inline int read(){
int f=,x=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return f*x;
}
int main(){
memset(head,-,sizeof(head));tot=;
n=read();m=read();
for(int i=;i<=m;i++)T[i].u=read(),T[i].v=read(),T[i].w=read();
tu=read();tv=read();tval=read();
sort(T+,T+m+);
for(int i=;i<=m;i++)
if(T[i].w<tval)addedge(T[i].u,T[i].v,);else break;
ans+=dinic(tu,tv);
memset(head,-,sizeof(head));tot=;
for(int i=m;i;i--)if(T[i].w>tval)addedge(T[i].u,T[i].v,);else break;
ans+=dinic(tu,tv);
printf("%d\n",ans);
}

【bzoj2561】最小生成树的更多相关文章

  1. bzoj2561最小生成树

    bzoj2561最小生成树 题意: 给定一个连通无向图,假设现在加入一条边权为L的边(u,v),求需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上. 题解: 最 ...

  2. BZOJ2561 最小生成树(最小割)

    考虑kruskal的过程:按边权从小到大考虑,如果这条边的两端点当前不连通则将其加入最小生成树.由此可以发现,某条边可以在最小生成树上的充要条件是其两端点无法通过边权均小于它的边连接. 那么现在我们需 ...

  3. [bzoj2561]最小生成树_网络流_最小割_最小生成树

    最小生成树 bzoj-2561 题目大意:题目链接. 注释:略. 想法: 我们发现: 如果一条权值为$L$的边想加入到最小生成树上的话,需要满足一下条件. 就是求出原图的最小生成树之后,这个边当做非树 ...

  4. bzoj2561: 最小生成树

    如果出现在最小生成树上,那么此时比该边权值小的边无法连通uv.据此跑最小割(最大流)即可. #include<cstdio> #include<cstring> #includ ...

  5. BZOJ2561最小生成树——最小割

    题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...

  6. bzoj千题计划322:bzoj2561: 最小生成树(最小割)

    https://www.lydsy.com/JudgeOnline/problem.php?id=2561 考虑Kruscal算法求最小生成树的流程 如果 u和v之间的长为L的边能出现在最小生成树里, ...

  7. BZOJ2561 最小生成树 【最小割】

    题目 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多 ...

  8. 【BZOJ2561】最小生成树 最小割

    [BZOJ2561]最小生成树 Description 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在 ...

  9. 【bzoj2561】最小生成树 网络流最小割

    题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...

随机推荐

  1. Android Service 服务(二)—— BroadcastReceiver

    (转自:http://blog.csdn.net/ithomer/article/details/7365147) 一. BroadcastReceiver简介 BroadcastReceiver,用 ...

  2. mysql 查询表的字段数目

    select column_name from information_schema.`COLUMNS` where TABLE_NAME ='tcm_head'

  3. Python模块学习:logging 日志记录

    原文出处: DarkBull    许多应用程序中都会有日志模块,用于记录系统在运行过程中的一些关键信息,以便于对系统的运行状况进行跟踪.在.NET平台中,有非常著名的第三方开源日志组件log4net ...

  4. lintcode-127-拓扑排序

    127-拓扑排序 给定一个有向图,图节点的拓扑排序被定义为: 对于每条有向边A--> B,则A必须排在B之前 拓扑排序的第一个节点可以是任何在图中没有其他节点指向它的节点 找到给定图的任一拓扑排 ...

  5. JMS实战——ActiveMQ实现Pub-Sub

    前言 上篇博客<JMS实战--ActiveMQ>介绍了ActiveMQ的安装,并实现了简单的PTP模型.这篇博客我们来看一下Pub-Sub模型,之后来总结一下JMS. 实现 项目结构 其中 ...

  6. 如何在tracepoint上注册函数

    register_trace_##name宏中 tracepoint_probe_register在这个函数中在同一个cp上可以挂多个处理函数, 查看函数:trace_block_rq_issue中定 ...

  7. 【NOIP模拟赛】与非 乱搞

    biubiu~~~ 正解是线段树维护真值表,但是我觉得对于这道题来说乱搞就够了....... 我们发现如果我们把每一个数都一开始取反就会发现对于最后结果来说 x=x^1,x nand x=x|x ,x ...

  8. [NOI2003] 文本编辑器 (splay)

    复制炸格式了,就不贴题面了 [NOI2003] 文本编辑器 Solution 对于光标的移动,我们只要记录一下现在在哪里就可以了 Insert操作:手动维护中序遍历结果,即每次取中点像线段树一样一样递 ...

  9. mysql_存储过程和函数

    存储过程和函数 1.什么是存储过程和函数 存储过程和函数是事先经过编译并存储在数据库中的一段SQL语句集合,调用存储过程和函数可以简化应用开发人员的很多工作,减少数据在数据库和应用服务器之间的传输,对 ...

  10. nginx反向代理Tomcat/Jetty获取客户端IP地址

    使用nginx做反向代理,Tomcat服务器和Jetty服务器如何获取客户端真实IP地址呢?首先nginx需要配置proxy_set_header,这样JSP使用request.getHeader(& ...