题目链接

容易发现,当加一条边时,树上会形成一个环,这个环上的每个点都是只要走一次的,也就是说我们的答案减少了这个环上点的个数,要使答案最小,即要使环上的点最多,求出直径\(L\),则答案为\(2(n-1)-L+1\)。

当加两条边时,同样会形成一个新环,但这个新环可能和第一个环有交点,而这些交点仍是要走两次的,所以我们要让交点的个数尽可能小,所以,把原直径上的所有边权取反,代表若取了这条边,答案会增大那么多,然后再求一次树的直径\(L_1\),则答案为\(2(n-1)-L+1-L_1+1=2n-L-L_1\)。

注意,第二次求直径不能用两边\(DFS/BFS\)来求,因为树中有负权边,直接跑答案显然是错的,所以我们要用树形\(DP\)求直径。

#include <cstdio>
const int MAXN = 5000010;
namespace IO{
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') w = -1; ch = getchar(); }
while(ch >= '0' && ch <= '9') { s = s * 10 + ch - '0'; ch = getchar(); }
return s * w;
}
}using namespace IO;
namespace G{
struct Edge{
int next, to, dis;
}e[MAXN << 1];
int head[MAXN], num;
inline void Add(int from, int to, int dis){
e[++num].to = to;
e[num].dis = dis;
e[num].next = head[from];
head[from] = num;
}
}using namespace G;
int n, k, s, t;
int a, b;
int pre[MAXN];
int Max = 0;
inline int max(int a, int b){
return a > b ? a : b;
}
void dfs(int u, int fa, int dep){
if(dep > Max && fa) s = u, Max = dep;
for(int i = head[u]; i; i = e[i].next)
if(e[i].to != fa)
dfs(e[i].to, u, dep + e[i].dis);
}
void DFS(int u, int fa, int dep){
if(dep > Max) t = u, Max = dep;
for(int i = head[u]; i; i = e[i].next)
if(e[i].to != fa)
pre[e[i].to] = u, DFS(e[i].to, u, dep + e[i].dis);
}
int d[MAXN], ans = -2147483647;
void dp(int u, int fa){
for(int i = head[u]; i; i = e[i].next)
if(e[i].to != fa){
dp(e[i].to, u);
ans = max(ans, d[u] + d[e[i].to] + e[i].dis);
d[u] = max(d[u], d[e[i].to] + e[i].dis);
}
}
int main(){
n = read(); k = read();
for(int i = 1; i < n; ++i){
a = read(); b = read();
Add(a, b, 1); Add(b, a, 1);
}
Max = -2147483647; dfs(1, 0, 0);
Max = -2147483647; DFS(s, 0, 0);
if(k == 1){
printf("%d\n", (n << 1) - 1 - Max);
return 0;
}
int now = t;
while(now != s){
for(int i = head[now]; i; i = e[i].next)
if(e[i].to == pre[now]){
e[i].dis = -1;
break;
}
now = pre[now];
}
dp(t, 0);
printf("%d\n", (n << 1) - Max - ans);
return 0;
}

【洛谷 P3629】 [APIO2010]巡逻 (树的直径)的更多相关文章

  1. 洛谷 P3629 [APIO2010]巡逻 解题报告

    P3629 [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通 ...

  2. 洛谷P3629 [APIO2010]巡逻(树的直径)

    如果考虑不算上新修的道路,那么答案显然为\(2*(n-1)\). 考虑\(k=1\)的情况,会发现如果我们新修建一个道路,那么就会有一段路程少走一遍.这时选择连接树的直径的两个端点显然是最优的. 难就 ...

  3. [洛谷P3629] [APIO2010]巡逻

    洛谷题目链接:[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以 ...

  4. 洛谷 P3629 [APIO2010]巡逻

    题目在这里 这是一个紫题,当然很难. 我们往简单的想,不建立新的道路时,从1号节点出发,把整棵树上的每条边遍历至少一次,再回到1号节点,会恰好经过每条边两次,路线总长度为$2(n-1)$,根据树的深度 ...

  5. BZOJ1912或洛谷3629 [APIO2010]巡逻

    一道树的直径 BZOJ原题链接 洛谷原题链接 显然在原图上路线的总长为\(2(n-1)\). 添加第一条边时,显然会形成一个环,而这条环上的所有边全部只需要走一遍.所以为了使添加的边的贡献最大化,我们 ...

  6. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  7. 【BZOJ2830/洛谷3830】随机树(动态规划)

    [BZOJ2830/洛谷3830]随机树(动态规划) 题面 洛谷 题解 先考虑第一问. 第一问的答案显然就是所有情况下所有点的深度的平均数. 考虑新加入的两个点,一定会删去某个叶子,然后新加入两个深度 ...

  8. 树的直径初探+Luogu P3629 [APIO2010]巡逻【树的直径】By cellur925

    题目传送门 我们先来介绍一个概念:树的直径. 树的直径:树中最远的两个节点间的距离.(树的最长链)树的直径有两种方法,都是$O(N)$. 第一种:两遍bfs/dfs(这里写的是两遍bfs) 从任意一个 ...

  9. 洛谷 [P3629] 巡逻

    树的直径 树的直径有两种求法 1.两遍 dfs 法, 便于输出具体方案,但是无法处理负权边 2.DP 法,代码量少,可以处理负权边 #include <iostream> #include ...

随机推荐

  1. 活动的生命周期 Android

    1.运行程序 onCreate().onStart()和 onResume() 2.跳转到非弹框视图控制器 onPause()和 onStop() 返回上一个视图控制器(没被回收) onRestart ...

  2. Win10启动不了的问题处理记录

    前几天电脑突然出现蓝屏的情况,而且使用Win10自带的修复功能根本没有卵用,修复不了,很郁闷,死活进不了系统了,说什么“INACCESSABE BOOT DEVICE”,好像是引导设备不可用. 到网上 ...

  3. Unity 3d C#和Javascript脚本互相调用 解决方案(非原创、整理资料,并经过实践得来)

    Unity 3d C#和Javascript脚本互相调用 解决方案 1.背景知识 脚本的编译过程分四步: 1. 编译所有 ”Standard Assets”, “Pro Standard Assets ...

  4. C# 获取当前日期当年的周数

    这几天跨年,项目上遇到了一个周数计算的问题. 2016年的元旦是周五开始的,之前系统计算的是属于15年的第53个周,但是年份已经到了16年了. 公司要求从1月1号周五开始算作16年的第一个周,今天1月 ...

  5. SVN被锁定如何解决?

    报错: “E:/SVN被锁定” 请进行清理操作 解决方式: 1.试着右击进行解锁 没有解决 2.试着进行清理,清理后再做更新操作 好的成功. OK能正常使用了. 2017年10月26日更新 报错: s ...

  6. 不同浏览器css引入外部字体的方式

    /** * 字体后缀和浏览器有关,如下所示 * .TTF或.OTF,适用于Firefox 3.5.Safari.Opera * .EOT,适用于Internet Explorer 4.0+ * .SV ...

  7. Qt Qml 汽车仪表

    上一个原文连接http://blog.csdn.net/z609932088/article/details/53946245 参考资料连接:链接: https://pan.baidu.com/s/1 ...

  8. python接口测试(一)——http请求及token获取

    使用python对当前的接口进行简单的测试 1.接口测试是针对软件对外提供服务得接口得输入输出进行得测试,验证接口功能与接口描述文档得一致性 返回结果可以为字符串,json,xml等 2.接口的请求方 ...

  9. Linux服务架设篇--ping命令

    工作原理: 向远程机发送包含一定字节数的ICMP数据包,如果能收到对方的回复的数据包,就表明网络是相通的,而且根据两个数据包的时间差,还可以知道相互之间网络链接的速度. 注意: 有些远程主机由于某种原 ...

  10. LINQ学习笔记——(1)添加扩展方法

    目的:  对已存在类型的行为进行扩展 注意事项:    扩展方法是一种特殊的静态方法    扩展方法必须在静态类中定义    扩展方法的优先级低于同名的类方法    扩展方法只在特定的命名空间内有效 ...