【Foreign】魔法 [组合数][质因数分解]
魔法
Time Limit: 10 Sec Memory Limit: 256 MB
Description
Input
Output
仅一行一个整数表示答案。
Sample Input
7 2 8 5
Sample Output
2
HINT
Solution
我们找一下规律,显然发现是就是Σa[i]*C(n-1,i-1)。然后问题主要就转化为了怎么快速求组合数C(n,i)在模一个非质数情况下的值。
首先我们先确定一个式子:
然后我们立马想到了一个暴力分解质因数的方法。就是记录所有的(n-i+1)和(i)的质因数,然后用上面的质因数个数减去下面的质因数个数,剩下的乘起来,就不用求取模了。
但是我们发现,这样显然会TLE,我们考虑如何优化。优化的话显然就是要找到一个办法不把多的质因数都彻底分解出来。我们来继续思考:
我们可以先求出模数的质因数,再对于(n-i+1)和(i)分解质因数。这时候如果质因数和模数的质因数一样,由于不互质没有逆元,就把它记录下来,等下用快速幂乘起来就行了。那么这时候其余的质因数就可以直接求逆元了,由于模数不是质数,我们运用这个公式:(phi暴力求即可)
这样做的话,由于模数的质因数是个数有限的,拆解其余数可以减少很多部分,那么效率就可以得到保证啦。
Code
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int Max = ;
const int ONE = ; int n,x,MOD;
int a[ONE];
int f[Max],p[Max],p_num;
int Num[Max];
int Ans; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} int Quickpow(int a,int b)
{
int res=;
while(b)
{
if(b&) res=(s64)res*a%MOD;
a=(s64)a*a%MOD;
b>>=;
}
return res;
} void Deal_prime(int x)
{
for(int i=;i*i<=x;i++)
if(!(x%i))
{
p[++p_num]=i;
while(!(x%i)) x/=i;
}
if(x>) p[++p_num]=x;
} int gcd(int a,int b) {int r=a%b; while(r) {a=b;b=r;r=a%b;} return b;}
int phi(int x) {int res=; for(int i=;i<x;i++)if(gcd(i,x)==) res++;return res;} int Add(int x,int P)
{
if(!x || x==) return x;
for(int i=;i<=p_num;i++)
{
while(!(x%p[i]))
{
x/=p[i];
Num[p[i]]+=P;
}
if(x==) break;
}
return x;
} int main()
{
n=get(); MOD=get();
Deal_prime(MOD);
int Phi = phi(MOD); int C=;
int record=;
for(int i=;i<=n;i++)
{
x=get();
Ans = (Ans+ (s64)record * x % MOD) % MOD;
if(i==n) break;
C = (s64)C * Add(n-i,) % MOD * Quickpow(Add(i,-),Phi-) % MOD;
record=C;
for(int j=;j<=p_num;j++)
record= (s64)record * Quickpow(p[j],Num[p[j]]) % MOD;
} printf("%d",Ans);
}
【Foreign】魔法 [组合数][质因数分解]的更多相关文章
- 【BZOJ2227】【ZJOI2011】看电影 [组合数][质因数分解]
看电影 Time Limit: 10 Sec Memory Limit: 259 MB[Submit][Status][Discuss] Description 到了难得的假期,小白班上组织大家去看 ...
- 【(阶乘的质因数分解)算组合数】【TOJ4111】【Binomial efficient】
n<=10^6 m<=10^6 p=2^32 用unsigned int 可以避免取模 我写的SB超时 阶乘分解代码 #include <cstdio> #include &l ...
- poj 3421 X-factor Chains——质因数分解
题目:http://poj.org/problem?id=3421 记忆化搜索竟然水过去了.仔细一想时间可能有点不对,但还是水过去了. #include<iostream> #includ ...
- 求n!质因数分解之后素数a的个数
n!质因数分解后P的个数=n/p+n/(p*p)+n/(p*p*p)+......直到n<p*p*p*...*p //主要代码,就这么点东西,数学真是厉害啊!幸亏我早早的就退了数学2333 do ...
- AC日记——质因数分解 1.5 43
43:质因数分解 总时间限制: 1000ms 内存限制: 65536kB 描述 已知正整数 n 是两个不同的质数的乘积,试求出较大的那个质数. 输入 输入只有一行,包含一个正整数 n. 对于60% ...
- 【BZOJ-4514】数字配对 最大费用最大流 + 质因数分解 + 二分图 + 贪心 + 线性筛
4514: [Sdoi2016]数字配对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 726 Solved: 309[Submit][Status ...
- 整数分解 && 质因数分解
输入整数(0-30)分解成所有整数之和.每四行换行一次. 一种方法是通过深度优先枚举出解.通过递归的方式来实现. #include <stdio.h> #include <strin ...
- algorithm@ 大素数判定和大整数质因数分解
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<time.h> #in ...
- POJ1365 - Prime Land(质因数分解)
题目大意 给定一个数的质因子表达式,要求你计算机它的值,并减一,再对这个值进行质因数分解,输出表达式 题解 预处理一下,线性筛法筛下素数,然后求出值来之后再用筛选出的素数去分解....其实主要就是字符 ...
随机推荐
- Migrating from MapReduce 1 (MRv1) to MapReduce 2 (MRv2, YARN)...
This is a guide to migrating from Apache MapReduce 1 (MRv1) to the Next Generation MapReduce (MRv2 o ...
- 实用脚本 1 -- 安装Ctags
Ctags是vim下方便代码阅读的工具,一般VIM中已经默认安装了Ctags,它可以帮助程序员很容易地浏览源代码. 1.如果系统中没有此工具用如下方法安装: 到ctags官网下载源码,解压后 ...
- hadoop中的方法的作用
/* * InputFormat类: * * 作用: * 1.设置输入的形式; * 2.将输入的数据按照相应的形式分割成一个个spilts后再进一步拆分成<key,value> ...
- lua基础知识笔记
一.lua中的数据类型 1.数值 a = 1 b = 1.2 2.字符串 c = "hello world" 3.布尔 d = true f = false 4.表(Table) ...
- .netcore centos环境搭建实战
步骤 1. 安装VMware Workstation 下载地址:https://my.vmware.com/cn/web/vmware/info/slug/desktop_end_user_compu ...
- 树莓派3_win10下使用"远程桌面连接"与树莓派通信(使用VNC实现连接后)
-----------------------------------------------------------学无止境------------------------------------- ...
- Python第二天 (数据类型,变量 )
1. 把任意数据类型赋值给变量 在Python中,等号=是赋值语句,可以把任意数据类型赋值给变量,同一个变量可以反复赋值,而且可以是不同类型的变量,例如: 例子:a = 123 # a是整数 prin ...
- ACM训练大纲
1. 算法总结及推荐题目 1.1 C++ STL • STL容器: set, map, vector, priority_queue, queue, stack, deque, bitset• STL ...
- nopcommerce商城系统--文档整理
原址:http://www.nopcommerce.com/documentation.aspx nopCommerce文档可以帮助您一步一步的搭建属于您自己的在线商城.根据该文档说明,您可以选择您想 ...
- SQL SERVER 查询语句学习:CHARINDEX
场景介绍 项目A需要一个批量删除的功能,之前我一直用SqlTransaction去处理,今天同事告诉我可以用CHARINDEX函数去解决问题,因此我今天就研究了一下. SQL语句 ---定义要删除的数 ...