【Foreign】魔法 [组合数][质因数分解]
魔法
Time Limit: 10 Sec Memory Limit: 256 MB
Description
Input
Output
仅一行一个整数表示答案。
Sample Input
7 2 8 5
Sample Output
2
HINT
Solution
我们找一下规律,显然发现是就是Σa[i]*C(n-1,i-1)。然后问题主要就转化为了怎么快速求组合数C(n,i)在模一个非质数情况下的值。
首先我们先确定一个式子:
然后我们立马想到了一个暴力分解质因数的方法。就是记录所有的(n-i+1)和(i)的质因数,然后用上面的质因数个数减去下面的质因数个数,剩下的乘起来,就不用求取模了。
但是我们发现,这样显然会TLE,我们考虑如何优化。优化的话显然就是要找到一个办法不把多的质因数都彻底分解出来。我们来继续思考:
我们可以先求出模数的质因数,再对于(n-i+1)和(i)分解质因数。这时候如果质因数和模数的质因数一样,由于不互质没有逆元,就把它记录下来,等下用快速幂乘起来就行了。那么这时候其余的质因数就可以直接求逆元了,由于模数不是质数,我们运用这个公式:(phi暴力求即可)
这样做的话,由于模数的质因数是个数有限的,拆解其余数可以减少很多部分,那么效率就可以得到保证啦。
Code
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int Max = ;
const int ONE = ; int n,x,MOD;
int a[ONE];
int f[Max],p[Max],p_num;
int Num[Max];
int Ans; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} int Quickpow(int a,int b)
{
int res=;
while(b)
{
if(b&) res=(s64)res*a%MOD;
a=(s64)a*a%MOD;
b>>=;
}
return res;
} void Deal_prime(int x)
{
for(int i=;i*i<=x;i++)
if(!(x%i))
{
p[++p_num]=i;
while(!(x%i)) x/=i;
}
if(x>) p[++p_num]=x;
} int gcd(int a,int b) {int r=a%b; while(r) {a=b;b=r;r=a%b;} return b;}
int phi(int x) {int res=; for(int i=;i<x;i++)if(gcd(i,x)==) res++;return res;} int Add(int x,int P)
{
if(!x || x==) return x;
for(int i=;i<=p_num;i++)
{
while(!(x%p[i]))
{
x/=p[i];
Num[p[i]]+=P;
}
if(x==) break;
}
return x;
} int main()
{
n=get(); MOD=get();
Deal_prime(MOD);
int Phi = phi(MOD); int C=;
int record=;
for(int i=;i<=n;i++)
{
x=get();
Ans = (Ans+ (s64)record * x % MOD) % MOD;
if(i==n) break;
C = (s64)C * Add(n-i,) % MOD * Quickpow(Add(i,-),Phi-) % MOD;
record=C;
for(int j=;j<=p_num;j++)
record= (s64)record * Quickpow(p[j],Num[p[j]]) % MOD;
} printf("%d",Ans);
}
【Foreign】魔法 [组合数][质因数分解]的更多相关文章
- 【BZOJ2227】【ZJOI2011】看电影 [组合数][质因数分解]
看电影 Time Limit: 10 Sec Memory Limit: 259 MB[Submit][Status][Discuss] Description 到了难得的假期,小白班上组织大家去看 ...
- 【(阶乘的质因数分解)算组合数】【TOJ4111】【Binomial efficient】
n<=10^6 m<=10^6 p=2^32 用unsigned int 可以避免取模 我写的SB超时 阶乘分解代码 #include <cstdio> #include &l ...
- poj 3421 X-factor Chains——质因数分解
题目:http://poj.org/problem?id=3421 记忆化搜索竟然水过去了.仔细一想时间可能有点不对,但还是水过去了. #include<iostream> #includ ...
- 求n!质因数分解之后素数a的个数
n!质因数分解后P的个数=n/p+n/(p*p)+n/(p*p*p)+......直到n<p*p*p*...*p //主要代码,就这么点东西,数学真是厉害啊!幸亏我早早的就退了数学2333 do ...
- AC日记——质因数分解 1.5 43
43:质因数分解 总时间限制: 1000ms 内存限制: 65536kB 描述 已知正整数 n 是两个不同的质数的乘积,试求出较大的那个质数. 输入 输入只有一行,包含一个正整数 n. 对于60% ...
- 【BZOJ-4514】数字配对 最大费用最大流 + 质因数分解 + 二分图 + 贪心 + 线性筛
4514: [Sdoi2016]数字配对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 726 Solved: 309[Submit][Status ...
- 整数分解 && 质因数分解
输入整数(0-30)分解成所有整数之和.每四行换行一次. 一种方法是通过深度优先枚举出解.通过递归的方式来实现. #include <stdio.h> #include <strin ...
- algorithm@ 大素数判定和大整数质因数分解
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<time.h> #in ...
- POJ1365 - Prime Land(质因数分解)
题目大意 给定一个数的质因子表达式,要求你计算机它的值,并减一,再对这个值进行质因数分解,输出表达式 题解 预处理一下,线性筛法筛下素数,然后求出值来之后再用筛选出的素数去分解....其实主要就是字符 ...
随机推荐
- PIC24 通过USB在线升级 -- USB CDC bootloader
了解bootloader的实现,请加QQ: 1273623966 (验证填bootloader):欢迎咨询或定制bootloader:我的博客主页www.cnblogs.com/geekygeek 今 ...
- This content database has a schema version which is not supported in this farm.
I want to move the website to another server. The new server has reinstall Sharepoint2013 serv ...
- 【多线程】 Task
[多线程] Task 一. 常用方法: 1. ContinueWith : 当前 Task 完成后, 执行传入的 Task 2. Delay : 创建一个等待的 Task,只有在调用 Wait 方法时 ...
- 基于Python的接口自动化-01
为什么要做接口测试 当前互联网产品迭代速度越来越快,由之前的2-3个月到个把月,再到班车制,甚至更短,每次发版之前都需要对所有功能进行回归测试,在人力资源有限的情况下,做自动化测试很有必要.由于UI更 ...
- Python网络编程(基础总结、 入门经典)
Linux下文件类型: bcd -lsp b(块.设备文件) c(字符设备文件) d(目录) -(普通文件) ...
- 01-Mysql数据库----前戏
MySql的前戏 在学习Mysql之前,我们先来想一下一开始做的登录注册案例,当时我们把用户的信息保存到一个文件中: #用户名 |密码root|123321 alex|123123 上面文件内容的规则 ...
- 梳理 Opengl ES 3.0 (五)shader运行原理
先来看看一张图 shader都是在运行时编译和执行的,每个shader都有一个main函数作为它的入口. vertex shader的功能有两个:一个是计算顶点坐标变换,另一个就是为片元shader计 ...
- Visual Studio 2005安装包
点击下载
- 二分图的最大匹配——Hopcroft-Karp算法
http://blog.csdn.net/wall_f/article/details/8248373
- Source Tree基础教程2
1.分支 项目——分支——推送 新分支要重新拉取项目后才可以看见 项目——拉取 2合并分支代码 将其他分支代码合并到当前分支——提交