loj 2542 随机游走 —— 最值反演+树上期望DP+fmt
题目:https://loj.ac/problem/2542
因为走到所有点的期望就是所有点期望的最大值,所以先最值反演一下,问题变成从根走到一个点集任意一点就停止的期望值;
设 \( f[x] \),则 \( f[x] = \frac{f[fa]+1+\sum\limits_{v \in son} (f[v]+1)}{d[x]} \),其中 \( d[x] \) 是 \( x \) 的度数;
因为其实只和 \( fa \) 有关,所以套路是设 \( f[x] = K[x] * f[fa] + B[x] \),推一推就可以树形DP求 \( K[x] , B[x] \),这好像叫“树上高斯消元”?!
因为走到集合内任意一个点就停止,所以 \( K[x] = B[x] = 0 ( x \in S ) \),\( f[rt] \) 即 \( B[rt] \) 就是答案;
然后高维前缀和求子集的 \( f \) 和,注意最值反演的符号要一开始就带上。
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
int const xn=,xm=(<<)+,mod=;
int n,rt,sid[xn][xn],bin[xn],cnt[xm],K[xn],B[xn],d[xn],f[xm];
ll pw(ll a,int b){a%=mod; ll ret=; for(;b;b>>=,a=a*a%mod)if(b&)ret=ret*a%mod; return ret;}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
void dfs(int x,int fa,int s)
{
if(s&bin[x-]){K[x]=B[x]=; return;}
int ks=,bs=;
for(int u=;u<=n;u++)
if(sid[x][u]&&u!=fa)
dfs(u,x,s),ks=upt(ks+K[u]),bs=upt(bs+B[u]);
K[x]=pw(d[x]-ks,mod-); B[x]=(ll)(bs+d[x])*pw(d[x]-ks,mod-)%mod;
}
int main()
{
n=rd(); int Q=rd(); rt=rd();
for(int i=,x,y;i<n;i++)x=rd(),y=rd(),sid[x][y]=sid[y][x]=,d[x]++,d[y]++;
bin[]=; for(int i=;i<=n;i++)bin[i]=(bin[i-]<<);
for(int s=;s<bin[n];s++)cnt[s]=cnt[s>>]+(s&);
for(int s=;s<bin[n];s++)
{
memset(K,,sizeof K); memset(B,,sizeof B);
dfs(rt,,s); f[s]=upt(((cnt[s]&)?:-)*B[rt]);//
}
for(int i=;i<=n;i++)
for(int s=;s<bin[n];s++)
if(s&bin[i-])f[s]=upt(f[s]+f[s^bin[i-]]);
for(int i=,k,s;i<=Q;i++)
{
k=rd(); s=;
for(int j=,x;j<=k;j++)x=rd(),s|=bin[x-];
printf("%d\n",f[s]);
}
return ;
}
loj 2542 随机游走 —— 最值反演+树上期望DP+fmt的更多相关文章
- LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...
- 【LOJ 2542】【PKUWC2018】 随机游走(最值反演 + 树上期望dp)
哇我太菜啦555555 不妨钦定我们需要访问的点集为$S$,在$S$已知的情况下,我们令$f(x) $表示从$x$走到点集$S$中任意一点的期望步数. 若$x∈S$,则显然$f(x)=0$,否则$f[ ...
- LOJ2542 随机游走 Min-Max容斥+树上期望DP
搞了一下午 真的是啥都不会 首先这道题要用到Min-Max容斥 得到的结论是 设 $Max(S)$表示集合里最晚被访问的节点被访问的期望步数 设 $Min(S)$表示集合里最早被访问的节点被访问的期望 ...
- LOJ#2542 随机游走
解:首先minmax容斥变成经过集合t的第一个点就停止的期望步数.对于某个t,设从x开始的期望步数为f(x) 如果x∈t,f(x) = 0.否则f(x) = ∑f(y) / in[x] + 1 树上高 ...
- 【LOJ2542】【PKUWC 2018】随机游走 min-max容斥 树上高斯消元
题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...
- loj2542 「PKUWC2018」随机游走 MinMax 容斥+树上高斯消元+状压 DP
题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. ...
- LOJ #2542「PKUWC2018」随机游走
$ Min$-$Max$容斥真好用 $ PKUWC$滚粗后这题一直在$ todolist$里 今天才补掉..还要更加努力啊.. LOJ #2542 题意:给一棵不超过$ 18$个节点的树,$ 5000 ...
- 【xsy1201】 随机游走 高斯消元
题目大意:你有一个$n*m$的网格(有边界),你从$(1,1)$开始随机游走,求走到$(n,m)$的期望步数. 数据范围:$n≤10$,$m≤1000$. 我们令 $f[i][j]$表示从$(1,1) ...
- 「Luogu4321」随机游走
「Luogu4321」随机游走 题目描述 有一张 \(n\) 个点 \(m\) 条边的无向图,\(Q\) 组询问,每次询问给出一个出发点和一个点集 \(S\) ,求从出发点出发随机游走走遍这个点集的期 ...
随机推荐
- [POI2007]驾驶考试egz
题目 BZOJ 神仙题,可比那些氵紫题有意思多了 做法 \(i\)能作为起始点,当\(i\)能到达\(1\)~\(i-1\)和\(i+1\)~\(n\) 这样处理显然会麻烦,因为要从每个点都特判一次 ...
- require.js和sea.js的区别
下面为大家讲解一下require.js和sea.js的区别.纯属个人意见,不喜勿喷. 首先原理上的区别 sea.js遵循CMD规范.书写方式类似node.js的书写模板代码.依赖的自动加载,配置的简洁 ...
- java屏幕截取
CaptureScreen.java ```import java.awt.Dimension; import java.awt.Rectangle; import java.awt.Robot; i ...
- 20145231《Java程序设计》第三次实验报告
实验三 敏捷开发与XP实现 实验内容 XP基础 XP核心实践 相关工具 实验要求 了解敏捷开发的基本方法以及XP软件开发的相关准则:了解代码编写的标准和原则:体会结对编程的好处: 实践体会版本控制的方 ...
- iOS下的WiFi开发
iOS下Wi-Fi开发需要添加依赖库SystemConfiguration.framework,在需要使用Wi-Fi信息的控制器下引入头文件#import <SystemConfiguratio ...
- 深入理解Node.js中的垃圾回收和内存泄漏的捕获
深入理解Node.js中的垃圾回收和内存泄漏的捕获 文章来自:http://wwsun.github.io/posts/understanding-nodejs-gc.html Jan 5, 2016 ...
- ubuntu 的mysql 安装过程和无法远程的解决方案
ubuntu 的mysql 安装过程和无法远程的解决方案 安装完mysql-server启动mysqlroot@ubuntu:# /etc/init.d/mysql start (如果这个命令不可以, ...
- springboot+mybatis+springSecurity+thymeleaf
配置步骤: .pom <dependencies> <dependency> <groupId>org.springframework.security</g ...
- 報錯:One or more validation errors were detected during model generation:System.Data.Edm.EdmEntityType: : EntityType 'Movie' has no key
報錯:One or more validation errors were detected during model generation:System.Data.Edm.EdmEntityType ...
- Python3一些包的下载
首先在windows的Python扩展包网址:http://www.lfd.uci.edu/~gohlke/pythonlibs/ 这里举例下载opencv3.2.0的安装包 我的电脑是win10,6 ...