【[SDOI2016]排列计数】
一眼题,答案就是\(C_m^m*d_{n-m}\)
就是从\(n\)个中选取\(m\)个在位,剩下的错排,之后就是乘法原理了
但是我发现我的错排公式竟然一直不会推
这个递推式很简单,就是\(d[1]=0,d[2]=1,d[n]=(n-1)*(d[n-2]+d[n-1)\)
其实是这样推出来的
我们从\(n\)个元素错排开始考虑,我们特殊判断一下第一个位置不能填\(1\),但是从\(2\)到\(n\)这\(n-1\)个数可以随便选,于是有\(n-1\)种可能
假设第一次放的的元素是\(k\)
之后剩下的就是
\]
我们可以将这些从小到大对应到\(1\)到\(n-1\),之后剩下的继续错排就好啦
于是就是\(d[n-1]\)
但是我们这个样子本质上是使得\(k\)那个位置不能放\(k+1\)的(因为\(k+1\)在去掉\(k\)之后是第\(k\)小的),于是我们还可以让\(k\)这个位置放\(k+1\),之后剩下的继续错排,于是就是\(d[n-2]\)
加法原理这两种不同的情况加起来,再利用乘法原理第一位上有\(n-1\)种选择
于是就有\(d[n]=(n-1)*(d[n-2]+d[n-1])\)
发现luogu日报里竟然又讲错排那就在这里收藏一下
这道题的代码
#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define LL long long
#define maxn 1000005
const int mod=1e9+7;
LL fac[maxn],d[maxn];
int T;
LL x,y;
inline LL read()
{
char c=getchar();
LL x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
LL exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b) return x=1,y=0,a;
LL r=exgcd(b,a%b,y,x);
y-=a/b*x;
return r;
}
inline LL C(LL n,LL m)
{
LL r=exgcd(fac[m]*fac[n-m]%mod,mod,x,y);
x=(x%mod+mod)%mod;
return fac[n]*x%mod;
}
int main()
{
T=read();
fac[0]=1,fac[1]=1;
for(re int i=2;i<=1000000;i++) fac[i]=fac[i-1]*i%mod;
d[0]=1,d[1]=0,d[2]=1;
for(re int i=3;i<=1000000;i++) d[i]=(d[i-1]+d[i-2]%mod)*(i-1)%mod;
LL n,m;
while(T--)
{
n=read(),m=read();
printf("%lld",C(n,m)*d[n-m]%mod);
putchar(10);
}
return 0;
}
【[SDOI2016]排列计数】的更多相关文章
- BZOJ 4517: [Sdoi2016]排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 911 Solved: 566[Submit][Status ...
- bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)
题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 846 Solved: 530[Submit][ ...
- 数学(错排):BZOJ 4517: [Sdoi2016]排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 693 Solved: 434[Submit][Status ...
- BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]
4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...
- BZOJ_4517_[Sdoi2016]排列计数_组合数学
BZOJ_4517_[Sdoi2016]排列计数_组合数学 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[ ...
- [BZOJ4517][SDOI2016]排列计数(错位排列)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1616 Solved: 985[Submit][Statu ...
- BZOJ 4517: [Sdoi2016]排列计数 错排公式
4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...
- 【BZOJ4517】[Sdoi2016]排列计数 组合数+错排
[BZOJ4517][Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值 ...
- BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*
BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...
- 数学【洛谷P4071】 [SDOI2016]排列计数
P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...
随机推荐
- 文献综述七:基于SSM的网上商城的开发与设计
一.基本信息 标题:基于SSM的网上商城的开发与设计 时间:2018 出版源:Computer Knowledge and Technology 文件分类:对框架的研究 二.研究背景 为了解决现在电商 ...
- jQuery遍历祖先元素:parentsUntil
Description: Get the ancestors of each element in the current set of matched elements, up to but not ...
- 阿里云服务器对外开放tomcat端口访问
今天第一次在阿里云服务器ecs上安装完成tomcat,然后启动tomcat之后.在本地输入ip:端口,发现不能访问. 出现这个的原因可能是你购买的服务器是 专有网络 类型的 如果是专有网络类型的服务器 ...
- Oracle命令整理
1 常用命令 常用命令 1 sqlplus scott/tiger@192.168.47.10:1521/orcl 后面不要加: sqlplus sys/oracle as sysdb ...
- 【坑】自动化测试之Excel表格
参考一位大神的博客项目架构,把元素和数据都参数化,但是总是被excel表格坑 1.无法下拉 动作列通过下拉列表来控制,点击下拉列表无反应 解决方案:不知道是不是中间动了什么,因为Excel版本的问题, ...
- Python之装饰器、迭代器和生成器
在学习python的时候,三大“名器”对没有其他语言编程经验的人来说,应该算是一个小难点,本次博客就博主自己对装饰器.迭代器和生成器理解进行解释. 为什么要使用装饰器 什么是装饰器?“装饰”从字面意思 ...
- OpenLayers3 实现自定义放大缩小滑块,自定义方向按钮
由于项目需要,需要自定义滑块.为此记录如下: <div id="map" class = "map"> <div id = "zoo ...
- Base class for cloning an object in C#
Base class for cloning an object in C# /// <summary> /// BaseObject class is an abstract class ...
- 前端之CSS——属性和定位
一.字体属性 1.font-size(字体大小) p { font-size: 14px; } font-size 属性可设置字体的尺寸. px:像素,稳定和精确 %:把 font-size 设置为基 ...
- 洛谷P2312 解方程(暴力)
题意 题目链接 Sol 出这种题会被婊死的吧... 首先不难想到暴力判断,然后发现连读入都是个问题. 对于\(a[i]\)取模之后再判断就行了.注意判断可能会出现误差,可以多找几个模数 #includ ...