1207: [HNOI2004]打鼹鼠

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 3089  Solved: 1499
[Submit][Status][Discuss]

Description

鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢把头探出到地面上来透透气的。根据这个特点阿Q编写了一个打鼹鼠的游戏:在一个n*n的网格中,在某些时刻鼹鼠会在某一个网格探出头来透透气。你可以控制一个机器人来打鼹鼠,如果i时刻鼹鼠在某个网格中出现,而机器人也处于同一网格的话,那么这个鼹鼠就会被机器人打死。而机器人每一时刻只能够移动一格或停留在原地不动。机器人的移动是指从当前所处的网格移向相邻的网格,即从坐标为(i,j)的网格移向(i-1, j),(i+1, j),(i,j-1),(i,j+1)四个网格,机器人不能走出整个n*n的网格。游戏开始时,你可以自由选定机器人的初始位置。现在你知道在一段时间内,鼹鼠出现的时间和地点,希望你编写一个程序使机器人在这一段时间内打死尽可能多的鼹鼠。

Input

第一行为n(n<=1000), m(m<=10000),其中m表示在这一段时间内出现的鼹鼠的个数,接下来的m行每行有三个数据time,x,y表示有一只鼹鼠在游戏开始后time个时刻,在第x行第y个网格里出现了一只鼹鼠。Time按递增的顺序给出。注意同一时刻可能出现多只鼹鼠,但同一时刻同一地点只可能出现一只鼹鼠。

Output

仅包含一个正整数,表示被打死鼹鼠的最大数目

Sample Input

2 2
1 1 1
2 2 2

Sample Output

1

HINT

给了10s,感觉可能有点给的多了,但是好像第一次A用了4s多一点,看到BZOJ上有人用了几十MS就A,感觉好厉害,希望他们不是打表就好……
做法应该和最长上升子序列差不多,只是好像不能用最长上升子序列的那个log的做法,因为无法判定哪个状态最佳……
 
第一种做法
 
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std; int f[],t[],x[],y[]; int abs(int a)
{
if(a<)return -a;
else return a;
} bool check(int i,int j)
{
if((abs(x[j]-x[i])+abs(y[j]-y[i]))<=abs(t[j]-t[i]))
return true;
else return false;
} int main()
{
int n,m,ans=;
fill(f+,f++,);
scanf("%d%d",&n,&m);
for(int i=;i<=m;++i)
{
scanf("%d%d%d",&t[i],&x[i],&y[i]);
for(int j=;j<i;++j)
if(check(i,j))
f[i]=max(f[i],f[j]+);
ans=max(f[i],ans);
}
printf("%d",ans);
}

就是一维数组记录在打第i只地鼠时所能打死的最多地鼠的数量

然后用i之前的至来更新他

好像二重循环比较慢的样子,需要m^2 ,但是好像是能优化掉一个m的,到log级别

只是看黄学长的优化方法,好像有点懵

做这个题有一点需要格外注意, f 数组一开始要初始化为 1 ,因为一开始的那只地鼠是肯定能打掉的……

第二种做法

是黄学长的优化,看起来好像与m^2做法没什么不同,但是好像结果很出人意料

#include<iostream>
#include<cstdio>
#define maxn 10005
using namespace std; int m,n;
int fx[maxn],x[maxn],y[maxn],t[maxn],f[maxn]; int abs(int a)
{
if(a<)return -a;
else return a;
} bool judge(int i,int j)
{
if((abs(x[j]-x[i])+abs(y[j]-y[i]))<=abs(t[j]-t[i]))
return true;
else return false;
} int main()
{
scanf("%d%d",&n,&m);
int ans=;
fx[]=;
for(int i=;i<=m;++i)
{
f[i]=true;
scanf("%d%d%d",&t[i],&x[i],&y[i]);
for(int j=i-;j>=;--j)
{
if(fx[j]<f[i])break;
if(f[j]<f[i])continue;
if(judge(i,j))f[i]=f[j]+;
}
fx[i]=max(fx[i-],f[i]);
ans=max(ans,f[i]);
}
printf("%d",ans);
return ;
}

仿佛变了魔术……从4754MS优化到60MS,我只是稍微写了个优化而已……

就是加了个数组记录最优解而已,然后在不可能的情形下退出循环而已……

竟然快了这么多……

这个题启示我们优化一定要好好学……

这可能也是我这几天见过的最简单的BZOJ的题了吧,竟然能水过去……

BZOJ 1207的更多相关文章

  1. [BZOJ 1207] [HNOI 2004] 打鼹鼠 【DP】

    题目链接:BZOJ - 1207 题目分析 每一次打鼹鼠一定是从上一次打某只鼹鼠转移过来的,从打第 j 只鼹鼠能不能转移到打第 i 只鼹鼠,算一下曼哈顿距离和时间差就知道了. 那么就有一个 DP ,用 ...

  2. BZOJ 1207 打鼹鼠

    Description 鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢把头探出到地面上来透透气的.根据这个特点阿Q编写了一个打鼹鼠的游戏:在一个n*n的网格中,在某些时刻鼹鼠会在某一个网格探 ...

  3. BZOJ 1207: [HNOI2004]打鼹鼠( dp )

    dp.. dp[ i ] = max( dp[ j ] + 1 ) ------------------------------------------------------------------ ...

  4. BZOJ 1207: [HNOI2004]打鼹鼠【妥妥的n^2爆搜,dp】

    1207: [HNOI2004]打鼹鼠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3259  Solved: 1564[Submit][Statu ...

  5. BZOJ 1207 [HNOI2004]打鼹鼠:dp【类似最长上升子序列】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1207 题意: 有一个n*n的网格,接下来一段时间内会有m只鼹鼠出现. 第i只鼹鼠会在tim ...

  6. bzoj 1207: [HNOI2004]打鼹鼠

    1207: [HNOI2004]打鼹鼠 Time Limit: 10 Sec  Memory Limit: 162 MB Description 鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜 ...

  7. BZOJ 1207 DP

    打一次鼹鼠必然是从曾经的某一次打鼹鼠转移过来的 以打每一个鼹鼠时的最优解为DP方程 #include<iostream> #include<cstdio> #include&l ...

  8. bzoj 1207: [HNOI2004]打鼹鼠 (dp)

    var n,m,i,j,ans:longint; x,y,time,f:..]of longint; begin readln(n,m); to m do readln(time[i],x[i],y[ ...

  9. bzoj 1207: [HNOI2004]打鼹鼠【dp】

    跟简单的dp,设f[i]表示前i只最多打几只,因为起点不确定,所以f[i]可以从任意abs(x[i]-x[j])+abs(y[i]-y[j])<=abs(time[i]-time[j])的j&l ...

随机推荐

  1. nvm版本管理工具安装

    windows 安装nvm步骤(shi'yongnvm-windows管理node版本): 瞎几把前言:mac上可以用n来管理node版本,私以为n很好用.家里的win7台式机一直没有安装过任何管理工 ...

  2. mongodb数据库高级操作

    1.创建索引 2.索引名称 3.其他索引 4.explain 5.操作索引 6.高级特性 7.固定集合 8.导入导出 9.上锁 10.添加用户 11.主从复制

  3. PAT 甲级 1007 Maximum Subsequence Sum

    https://pintia.cn/problem-sets/994805342720868352/problems/994805514284679168 Given a sequence of K  ...

  4. 【EasyNetQ】- 连接RabbitMQ

    如果您习惯于处理与SQL Server等关系数据库的连接,那么您可能会发现EasyNetQ处理连接的方式有点奇怪.与关系数据库的通信始终由客户端启动.客户端打开连接,发出SQL命令,在必要时处理结果, ...

  5. 【转】深入理解Java中的String

    原文链接:http://www.cnblogs.com/xiaoxi/p/6036701.html 一.String类 想要了解一个类,最好的办法就是看这个类的实现源代码,来看一下String类的源码 ...

  6. Java IO 流 体系结构图

  7. 做一个iframe的弹出框

    群里有个人想在微信页面里面加弹出框.作为前端的我,想着不可能这样做.后来一个人说了: A:如果对方没有防盗链的话,你可以建个页面,内置iframe 到他的页面,然后把url 的参数也传入你的ifram ...

  8. BZOJ2286 [Sdoi2011]消耗战 【虚树 + 树形Dp】

    2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MB Submit: 4261  Solved: 1552 [Submit][Sta ...

  9. CF451E Devu and Flowers 解题报告

    CF451E Devu and Flowers 题意: \(Devu\)有\(N\)个盒子,第\(i\)个盒子中有\(c_i\)枝花.同一个盒子内的花颜色相同,不同盒子的花颜色不同.\(Devu\)要 ...

  10. Hyperledger Fabric架构详解

    区块链开源实现HYPERLEDGER FABRIC架构详解 区块链开源实现HYPERLEDGER FABRIC架构详解 2018年5月26日 陶辉 Comments 10 Comments hyper ...