【bzoj2763】[JLOI2011]飞行路线 (分层图最短路)(优先队列dij)
【bzoj2763】[JLOI2011]飞行路线
Description
Input
Output
Sample Input
0 4
0 1 5
1 2 5
2 3 5
3 4 5
2 3 3
0 2 100
Sample Output
HINT
对于30%的数据,2<=n<=50,1<=m<=300,k=0;
对于50%的数据,2<=n<=600,1<=m<=6000,0<=k<=1;
对于100%的数据,2<=n<=10000,1<=m<=50000,0<=k<=10.
【分析】这是一个分层图最短路的题。题中说对于最短路,其中有k条边可以免费,那么我们就建k层图。对于当前节点,我可以在本层跑,我也可以往上一层,即该条边免费,前提是已经免费的边的条数<k。则用dij即可。
#include <cstdio>
#include <map>
#include <algorithm>
#include <vector>
#include <iostream>
#include <set>
#include <queue>
#include <string>
#include <cstdlib>
#include <cstring>
#include <cmath>
using namespace std;
typedef pair<int,int>pii;
typedef long long LL;
const int N=6e4+;
const int mod=1e9+;
int n,m,s,k,t,cnt,idl[N<<],idr[N<<];
bool vis[N][];
LL d[N][];
vector<pii>edg[N];
struct man{
int v;
int c;
LL w;
bool operator<(const man &e)const{
return w>e.w;
}
};
priority_queue<man>q;
void dij(int s){
memset(d,-,sizeof d);memset(vis,,sizeof vis);
d[s][]=;
q.push(man{s,,});
while(!q.empty()){
int u=q.top().v,c=q.top().c;q.pop(); if(vis[u][c])continue;
vis[u][c]=;
for(int i=;i<edg[u].size();++i){
int v=edg[u][i].first,w=edg[u][i].second;
if(!vis[v][c]&&(d[v][c]==-||d[v][c]>d[u][c]+w)){
d[v][c]=d[u][c]+w;
q.push(man{v,c,d[v][c]});
}
if(c<k){
if(!vis[v][c+]&&(d[v][c+]==-||d[v][c+]>d[u][c])){
d[v][c+]=d[u][c];
q.push(man{v,c+,d[v][c+]});
}
}
}
}
}
int main()
{
int x,y,w;
scanf("%d%d%d",&n,&m,&k);
scanf("%d%d",&s,&t);
while(m--)
{
scanf("%d%d%d",&x,&y,&w);
edg[x].push_back(make_pair(y,w));
edg[y].push_back(make_pair(x,w));
}
dij(s);
LL ans=;
for(int i=;i<=k;i++)ans=min(ans,d[t][i]);
printf("%lld\n",ans);
return ;
}
【bzoj2763】[JLOI2011]飞行路线 (分层图最短路)(优先队列dij)的更多相关文章
- BZOJ2763: [JLOI2011]飞行路线(分层图 最短路)
题意 题目链接 Sol 分层图+最短路 建\(k+1\)层图,对于边\((u, v, w)\),首先在本层内连边权为\(w\)的无向边,再各向下一层对应的节点连边权为\(0\)的有向边 如果是取最大最 ...
- BZOJ2763[JLOI2011]飞行路线 [分层图最短路]
2763: [JLOI2011]飞行路线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2523 Solved: 946[Submit][Statu ...
- [bzoj2763][JLOI2011]飞行路线——分层图最短路
水题.不多说什么. #include <bits/stdc++.h> using namespace std; const int maxn = 10010; const int maxk ...
- bzoj2763 [JLOI]飞行路线 分层图最短路
问题描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...
- bzoj2763: [JLOI2011]飞行路线(分层图spfa)
2763: [JLOI2011]飞行路线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3234 Solved: 1235[Submit][Stat ...
- [JLOI2011]飞行路线 分层图最短路
题目描述: Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在nn个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一 ...
- P4568 [JLOI2011]飞行路线 分层图最短路
思路:裸的分层图最短路 提交:1次 题解: 如思路 代码: #include<cstdio> #include<iostream> #include<cstring> ...
- 【bzoj2763】[JLOI2011]飞行路线 分层图最短路
题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...
- bzoj 2763: [JLOI2011]飞行路线 -- 分层图最短路
2763: [JLOI2011]飞行路线 Time Limit: 10 Sec Memory Limit: 128 MB Description Alice和Bob现在要乘飞机旅行,他们选择了一家相 ...
- bzoj2763 [JLOI2011]飞行路线——分层图
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2763 构建分层图. 代码如下: 写法1(空间略大)(时间很慢): #include<i ...
随机推荐
- 2018牛客多校第一场 B.Symmetric Matrix
题意: 构造一个n*n的矩阵,使得Ai,i = 0,Ai,j = Aj,i,Ai,1+Ai,2+...+Ai,n = 2.求种类数. 题解: 把构造的矩阵当成邻接矩阵考虑. 那么所有点的度数都为2,且 ...
- 洛谷 P2168 [NOI2015]荷马史诗 解题报告
P2168 [NOI2015]荷马史诗 题目描述 追逐影子的人,自己就是影子 --荷马 Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷 ...
- TYVJ 1035 / codevs 2171 棋盘覆盖
Problem Description 给定一个n * m的棋盘,已知某些各自禁止放置,求最多往棋盘上放多少长度为2宽度为1的骨牌(骨牌不重叠) Input 第一行为n,m(表示有m个删除的格子)第二 ...
- bzoj2002: [Hnoi2010]Bounce 弹飞绵羊 分块
这个题体现了分块不只是最大值最小值众数次数,而是一种清真的思想. 我们把整个序列分块,在每个块里处理每个位置跳出这个块的次数和跳出的位置,那么每次修改n0.5,每次查询也是,那么O(m* n0.5)的 ...
- The XOR Largest Pair [Trie]
描述 在给定的N个整数A1,A2--AN中选出两个进行xor运算,得到的结果最大是多少? 输入格式 第一行一个整数N,第二行N个整数A1-AN. 输出格式 一个整数表示答案. 样例输入 3 1 2 3 ...
- npm install 权限的问题
用ctrl+r切换到对象的目录,以管理圆的身份执行 npm cache clean first. If that doesn’t fix things, take a look in %APPDATA ...
- hive Illegal Operation state transition from CLOSED to ERROR的处理
异常堆栈如下: 2015-11-24 16:49:11,495 ERROR org.apache.hive.service.cli.operation.Operation: Error running ...
- springboot部署多个vue项目
在springboot下部署多个vue项目,只需要将vue打包成静态文件后,将其放在resources的静态文件夹下即可. 如下图:static目录下有三个vue的静态文件夹,分别为运营后台(admi ...
- Linux引导过程
早期时,启动一台计算机意味着要给计算机喂一条包含引导程序的纸带,或者手工使用前端面板地址/数据/控制开关来加载引导程序.尽管目前的计算机已经装备了很多工具来简化引导过程,但是这一切并没有对整个过程进行 ...
- 【Python实例二】之前期准备:Windows下的BeautifulSoup安装
前言 一直久闻Python的爬虫很高效,而且操作便捷,因此决定开始练习爬虫的相关内容. 首先尝试的是Python的爬虫利器之一:BeautifulSoup.(这名字听起来就有种想要去探究的兴趣.... ...