题目描述

小强很喜欢数列。有一天,他心血来潮,写下了一个数列。

阿米巴也很喜欢数列。但是他只喜欢其中一种:波动数列。

一个长度为n的波动数列满足对于任何i(1 <= i < n),均有:

a[2i-1] <= a[2i] 且 a[2i] >= a[2i+1](若存在) 或者

a[2i-1] >= a[2i] 且 a[2i] <= a[2i+1](若存在)

阿米巴把他的喜好告诉了小强。小强便打算稍作修改,以让这个数列成为波动数列。他想知道,能否通过仅修改一个数(或不修改),使得原数列变成波动数列。

输入输出格式

输入格式:

输入包含多组数据。

每组数据包含两行。

第一行一个整数n表示数列的长度。

接下来一行,n个整数,表示一个数列。

输出格式:

对于每一组输入,输出一行Yes或No,含义如题目所示。

输入输出样例

输入样例#1:

5
1 2 3 2 1
5
1 2 3 4 5
输出样例#1:

Yes
No

说明

对于30%的数据,n <= 10

对于另外30%的数据,m <= 1000

对于100%的数据,n <= 10^5,m <= 10^9

其中m = max|a[i]|(数列中绝对值的最大值)

【分析】:

如果给定一个序列,可以很容易的在 O(n) 时间内判断该序 列是否为波动序列。 首先判断该序列是否为波动序列,如果是,则直接输 出”Yes“。 否则,枚举修改哪一个数。 可以发现如一个数要被修改,则将其改为 ∞ 或 −∞ 一定不 会比修改为别的数不优。 所以将其修改为 ∞ 或 −∞ 后再次判断。 总复杂度 O(n^2)。

AC: 由于波动序列本质上只有 2 种,所以对于每一种波动序列, 求出将原序列变为这种波动序列最少需要修改几次。

如果两个值的较小值不大于 1,则输出”Yes“,否则输出”No“。

问题变为求原序列变为某种波动序列需要的最小修改次数。 从前向后扫,如果遇到某个元素不满足要求,则将该元素修 改为 ∞ 和 −∞ 中满足要求的那个,并将计数器加一。

最后计数器的值就是修改需要的最小次数。 总复杂度 O(n)。

【代码】:

#include <iostream>
#include <cstring>
#include <cstdio>
#define maxn 100010 using namespace std; int a[maxn];
int n; bool judge(bool dir)// 首先判断该序列是否为波动序列,如果是,则直接输 出”Yes“。 否则,枚举修改哪一个数。
{
int cnt = ;
for (int i = ; i <= n; i++, dir = !dir)
if (a[i] != a[i-] && (a[i] > a[i-]) != dir)
if (++cnt > )
return false;//从前向后扫,如果遇到某个元素不满足要求,则将该元素修 改为 ∞ 和 −∞ 中满足要求的那个,并将计数器加一。
else
{
i++;
dir = !dir;
}
return true;
} int main()
{
while (scanf("%d", &n) >= )
{
for (int i = ; i <= n; i++)
scanf("%d", &a[i]); if (n <= )
printf("Yes\n");
else
printf(judge() || judge() ? "Yes\n" : "No\n");
}
//如果两个值的较小值不大于 1,则输出”Yes“,否则输出”No“。
return ;
}

洛谷P3929 SAC E#1 - 一道神题 Sequence1【枚举】的更多相关文章

  1. [洛谷P3929]SAC E#1 - 一道神题 Sequence1

    题目大意:给你一串数列,问你能否改变1个数或不改,使它变成波动数列? 一个长度为n的波动数列满足对于任何i(1 <= i < n),均有: a[2i-1] <= a[2i] 且 a[ ...

  2. 洛谷 P3927 SAC E#1 - 一道中档题 Factorial【数论//】

    题目描述 SOL君很喜欢阶乘.而SOL菌很喜欢研究进制. 这一天,SOL君跟SOL菌炫技,随口算出了n的阶乘. SOL菌表示不服,立刻就要算这个数在k进制表示下末尾0的个数. 但是SOL菌太菜了于是请 ...

  3. 洛谷P3928 SAC E#1 - 一道简单题 Sequence2

    提交地址 题目背景 小强和阿米巴是好朋友. 题目描述 小强喜欢数列.有一天,他心血来潮,写下了三个长度均为n的数列. 阿米巴也很喜欢数列.但是他只喜欢其中一种,波动数列. 阿米巴把他的喜好告诉了小强. ...

  4. 洛谷-P3927 SAC E#1 - 一道中档题 Factorial

    原址 题目背景 数据已修改 SOL君(炉石主播)和SOL菌(完美信息教室讲师)是好朋友. 题目描述 SOL君很喜欢阶乘.而SOL菌很喜欢研究进制. 这一天,SOL君跟SOL菌炫技,随口算出了n的阶乘. ...

  5. [洛谷3930]SAC E#1 - 一道大水题 Knight

    Description 他们经常在一起玩一个游戏,不,不是星际争霸,是国际象棋.毒奶色觉得F91是一只鸡.他在一个n×n的棋盘上用黑色的城堡(车).骑士(马).主教(象).皇后(副).国王(帅).士兵 ...

  6. [洛谷P3927]SAC E#1 - 一道中档题 Factorial

    题目大意:求$n!$在$k(k>1)$进制下末尾0的个数. 解题思路:一个数在十进制转k进制时,我们用短除法来做.容易发现,如果连续整除p个k,则末尾有p个0. 于是问题转化为$n!$能连续整除 ...

  7. SAC E#1 - 一道神题 Sequence1

    题目背景 小强和阿米巴是好朋友. 题目描述 小强很喜欢数列.有一天,他心血来潮,写下了一个数列. 阿米巴也很喜欢数列.但是他只喜欢其中一种:波动数列. 一个长度为n的波动数列满足对于任何i(1 < ...

  8. 洛谷P3926 SAC E#1 - 一道不可做题 Jelly【模拟/细节】

    P3926 SAC E#1 - 一道不可做题 Jelly [链接]:https://www.luogu.org/problem/show?pid=3926 题目背景 SOL君(炉石主播)和SOL菌(完 ...

  9. l洛谷 P3926 SAC E#1 - 一道不可做题 Jelly

    P3926 SAC E#1 - 一道不可做题 Jelly 题目背景 SOL君(炉石主播)和SOL菌(完美信息教室讲师)是好朋友. 题目描述 SOL君很喜欢吃蒟蒻果冻.而SOL菌也很喜欢蒟蒻果冻. 有一 ...

随机推荐

  1. iOS-数据持久化之Sqllite

    iOS中的数据存储方式 Plist(NSArray\NSDictionary) Preference(偏好设置\NSUserDefaults) NSCoding(NSKeyedArchiver\NSk ...

  2. 【C++ 拾遗】Function-like Macros

    Macro expansion is done by the C preprocessor at the beginning of compilation. The C preprocessor is ...

  3. 【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态

    我们感性可证离散(不离散没法做),于是我们就有了状态转移的思路(我们只考虑单不减另一个同理),f[i][j]到了第i块高度为j的最小话费,于是我们就可以发现f[i][j]=Min(f[i-1][k]) ...

  4. 安卓sdk安装教程

    http://blog.csdn.net/love4399/article/details/77164500

  5. Oulipo HDU - 1686

    The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e ...

  6. ActiveMQ(3) ActiveMQ创建(simpleAuthenticationPlugin)安全认证

    控制端安全认证: ActiveMQ目录conf下jetty.xml: <bean id="securityLoginService" class="org.ecli ...

  7. HTML页面为什么设置了UTF-8仍然中文乱码

    如题,其实问题很简单,在用EditPlus写html页面的时候,发现设置为UTF-8的时候仍然出现了乱码,这是一个很奇怪的问题,而且我完全考虑了浏览器的解析问题,将title放在了了meta标签之后, ...

  8. css和javascript中图片路径的不同

    之前在写前端代码时,在图片路径的设置那里经常会遇到一个问题.比方说,我 (1)在根目录下面新建了个"images"文夹,里面放了张图片top.gif (2)在根目录下另外新建了两个 ...

  9. Nginx反向代理丢失cookie的问题

    今天在测试环境进行测试时发现有个页面无论如何都进不去了,经过调试发现,JSESSIONID的path和我访问应用的工程不相同!我访问的应用是/xxx/,而JSESSIONID的path是/yyy/,这 ...

  10. [bzoj1568][JSOI2008]Blue Mary开公司——李超线段树

    题目大意 题解 这道题需要用到一种叫做李超线段树的东西.我对于李超线段树,是这样理解的: 给节点打下的标记不进行下传,而是仅仅在需要的时候进行下传,这就是所谓永久化标记. 对于这道题,借用一张图, 这 ...