什么叫序列化——将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化

比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?
现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。
但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。
你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢?
没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串,
但是你要怎么把一个字符串转换成字典呢?
聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。
eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。
BUT!强大的函数有代价。安全性是其最大的缺点。
想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。
而使用eval就要担这个风险。
所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)

序列化的目的

1、以某种存储形式使自定义对象持久化
2、将对象从一个地方传递到另一个地方。
3、使程序更具维护性。

Json模块提供了四个功能:dumps、dump、loads、load

import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = json.dumps(dic) #序列化:将一个字典转换成一个字符串
print(type(str_dic),str_dic) #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"}
#注意,json转换完的字符串类型的字典中的字符串是由""表示的 dic2 = json.loads(str_dic) #反序列化:将一个字符串格式的字典转换成一个字典
#注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
print(type(dic2),dic2) #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'} list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]
str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型
print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]
list_dic2 = json.loads(str_dic)
print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]
import json
f = open('json_file','w')
dic = {'k1':'v1','k2':'v2','k3':'v3'}
json.dump(dic,f) #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
f.close() f = open('json_file')
dic2 = json.load(f) #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
f.close()
print(type(dic2),dic2)
import json
f = open('file','w')
json.dump({'国籍':'中国'},f)
ret = json.dumps({'国籍':'中国'})
f.write(ret+'\n')
json.dump({'国籍':'美国'},f,ensure_ascii=False)
ret = json.dumps({'国籍':'美国'},ensure_ascii=False)
f.write(ret+'\n')
f.close()
Serialize obj to a JSON formatted str.(字符串表示的json对象)
Skipkeys:默认值是False,如果dict的keys内的数据不是python的基本类型(str,unicode,int,long,float,bool,None),设置为False时,就会报TypeError的错误。此时设置成True,则会跳过这类key
ensure_ascii:,当它为True的时候,所有非ASCII码字符显示为\uXXXX序列,只需在dump时将ensure_ascii设置为False即可,此时存入json的中文即可正常显示。)
If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse).
If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity).
indent:应该是一个非负的整型,如果是0就是顶格分行显示,如果为空就是一行最紧凑显示,否则会换行且按照indent的数值显示前面的空白分行显示,这样打印出来的json数据也叫pretty-printed json
separators:分隔符,实际上是(item_separator, dict_separator)的一个元组,默认的就是(‘,’,’:’);这表示dictionary内keys之间用“,”隔开,而KEY和value之间用“:”隔开。
default(obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError.
sort_keys:将数据根据keys的值进行排序。
To use a custom JSONEncoder subclass (e.g. one that overrides the .default() method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.
import json
data = {'username':['李华','二愣子'],'sex':'male','age':16}
json_dic2 = json.dumps(data,sort_keys=True,indent=2,separators=(',',':'),ensure_ascii=False)
print(json_dic2)

用于序列化的两个模块

  • json,用于字符串 和 python数据类型间进行转换
  • pickle,用于python特有的类型 和 python的数据类型间进行转换

pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load  (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化

import pickle
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = pickle.dumps(dic)
print(str_dic) #一串二进制内容 dic2 = pickle.loads(str_dic)
print(dic2) #字典 import time
struct_time = time.localtime(1000000000)
print(struct_time)
f = open('pickle_file','wb')
pickle.dump(struct_time,f)
f.close() f = open('pickle_file','rb')
struct_time2 = pickle.load(f)
print(struct_time2.tm_year)

Json模块的详细介绍(序列化)的更多相关文章

  1. Python 模块EasyGui详细介绍

    转载:无知小德 Python 模块EasyGui详细介绍 EasyGui 官网: http://easygui.sourceforge.net 官方的教学文档:http://easygui-docs- ...

  2. 一、Python 模块EasyGui详细介绍

    Python 模块EasyGui详细介绍 EasyGui 官网: -http://easygui.sourceforge.net 官方的教学文档: -easygui-docs-0.96\tutoria ...

  3. (数据科学学习手札32)Python中re模块的详细介绍

    一.简介 关于正则表达式,我在前一篇(数据科学学习手札31)中已经做了详细介绍,本篇将对Python中自带模块re的常用功能进行总结: re作为Python中专为正则表达式相关功能做出支持的模块,提供 ...

  4. 模块讲解----json模块(跨平台的序列化与反序列化)

    一.json的特点 1.只能处理简单的可序列化的对象:(字典,列表,元祖) 2.json支持不同语言之间的数据交互:(python  -  go,python - java)   二.使用场景 1.玩 ...

  5. python json模块小技巧

    python的json模块通常用于与序列化数据,如 def get_user_info(user_id): res = {"user_id": 190013234,"ni ...

  6. Python中的序列化以及pickle和json模块介绍

    Python中的序列化指的是在程序运行期间,变量都是在内存中保存着的,如果我们想保留一些运行中的变量值,就可以使用序列化操作把变量内容从内存保存到磁盘中,在Python中这个操作叫pickling,等 ...

  7. Python开发之序列化与反序列化:pickle、json模块使用详解

    1 引言 在日常开发中,所有的对象都是存储在内存当中,尤其是像python这样的坚持一切接对象的高级程序设计语言,一旦关机,在写在内存中的数据都将不复存在.另一方面,存储在内存够中的对象由于编程语言. ...

  8. request 模块详细介绍

    request 模块详细介绍 request Requests 是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装 ...

  9. 爬虫 Http请求,urllib2获取数据,第三方库requests获取数据,BeautifulSoup处理数据,使用Chrome浏览器开发者工具显示检查网页源代码,json模块的dumps,loads,dump,load方法介绍

    爬虫 Http请求,urllib2获取数据,第三方库requests获取数据,BeautifulSoup处理数据,使用Chrome浏览器开发者工具显示检查网页源代码,json模块的dumps,load ...

随机推荐

  1. 剑指Offer-正则表达式匹配(Python)

    1 题干内容 请实现一个函数用来匹配包括.和*的正则表达式.模式中的字符.表示任意一个字符,而*表示它前面的字符可以出现任意次(包含0次). 在本题中,匹配是指字符串的所有字符匹配整个模式. 例如,字 ...

  2. AngularJs学习笔记(2)——ng-include

    编写html文档的时候,为了实现代码模块化,增加复杂页面的代码可读性和可维护性,我们常常会想到将代码分散写入不同的HTML文件 angularJS里面的ng-include指令结合ng-control ...

  3. 最小生成树之Kruskal算法和Prim算法

    依据图的深度优先遍历和广度优先遍历,能够用最少的边连接全部的顶点,并且不会形成回路. 这样的连接全部顶点并且路径唯一的树型结构称为生成树或扩展树.实际中.希望产生的生成树的全部边的权值和最小,称之为最 ...

  4. chrome mp4格式支持问题

    经过一些搜索得知,其实根本的问题是虽然大家都是.mp4后缀的文件,但是编码方式不同,而video标签的标准是用H.264方式编码视频的MP4文件(当然video标签还可以播放WebM和OGG格式的文件 ...

  5. cpu分析简介

    进程占用CPU过高,一般有以下两种原因:          1.    业务量过大导致进程处理负荷高,占用CPU资源:2.    程序BUG导致,比如死循环:    初步查看cpu占用情况top进一步 ...

  6. UML序列图

    先准备好之前的类图,然后在最开始的地方新添加一个版块“交互设计” Add Diagram --> Sequence Diagram Add --> Actor建立一个user 然后就可以拖 ...

  7. __attribute__系列之aligned

    __attribute__的属性aligned,作用是为了设置字节对齐. aligned是对 变量和结构体进行 字节对齐的属性设置. 通过aligned属性设置(aligned(对齐字节数)),可以显 ...

  8. MapReduce源码分析之作业Job状态机解析(一)简介与正常流程浅析

    作业Job状态机维护了MapReduce作业的整个生命周期,即从提交到运行结束的整个过程.Job状态机被封装在JobImpl中,其主要包括14种状态和19种导致状态发生的事件. 作业Job的全部状态维 ...

  9. Java报表生成技术

    报表是以格式化的形式输出数据,并对数据进行分组.汇总.计算等操作.通过报表.图表或者嵌入图片图像等形式来丰富数据的显示. 报表生成的步骤: 后台数据抽取(DAO层): 数据项逻辑运算(业务逻辑层): ...

  10. Unity3D学习笔记——Android重力感应控制小球

    一:准备资源 两张贴图:地图和小球贴图. 二:导入资源 在Assets下建立resources文件夹,然后将贴图导入. 三:建立场景游戏对象 1.建立灯光: 2.创建一个相机,配置默认. 3.建立一个 ...