codeforces 985E Pencils and Boxes(dp+思维)
2 seconds
256 megabytes
standard input
standard output
Mishka received a gift of multicolored pencils for his birthday! Unfortunately he lives in a monochrome world, where everything is of the same color and only saturation differs. This pack can be represented as a sequence a1, a2, ..., an of n integer numbers — saturation of the color of each pencil. Now Mishka wants to put all the mess in the pack in order. He has an infinite number of empty boxes to do this. He would like to fill some boxes in such a way that:
- Each pencil belongs to exactly one box;
- Each non-empty box has at least k pencils in it;
- If pencils i and j belong to the same box, then |ai - aj| ≤ d, where |x| means absolute value of x. Note that the opposite is optional, there can be pencils i and j such that |ai - aj| ≤ d and they belong to different boxes.
Help Mishka to determine if it's possible to distribute all the pencils into boxes. Print "YES" if there exists such a distribution. Otherwise print "NO".
The first line contains three integer numbers n, k and d (1 ≤ k ≤ n ≤ 5·105, 0 ≤ d ≤ 109) — the number of pencils, minimal size of any non-empty box and maximal difference in saturation between any pair of pencils in the same box, respectively.
The second line contains n integer numbers a1, a2, ..., an (1 ≤ ai ≤ 109) — saturation of color of each pencil.
Print "YES" if it's possible to distribute all the pencils into boxes and satisfy all the conditions. Otherwise print "NO".
6 3 10
7 2 7 7 4 2
YES
6 2 3
4 5 3 13 4 10
YES
3 2 5
10 16 22
NO
In the first example it is possible to distribute pencils into 2 boxes with 3 pencils in each with any distribution. And you also can put all the pencils into the same box, difference of any pair in it won't exceed 10.
In the second example you can split pencils of saturations [4, 5, 3, 4] into 2 boxes of size 2 and put the remaining ones into another box.
题意:有n个铅笔,每只铅笔有个value,现在把他们分发到几个笔筒中,每个笔筒最少放k个笔,且放入的每支笔的value差不能大于d。求解能不能找到一种方案满足。
思路:
dp。先排序,判断最后一个数能否作为一个序列的结尾。
#include <iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<deque>
#include<vector>
#define ll long long
#define inf 0x3f3f3f3f
#define mod 1000000007;
using namespace std;
ll a[];
bool dp[];
int main()
{
int n,k;
ll d;
scanf("%d%d%I64d",&n,&k,&d);
for(int i=;i<=n;i++)
{
scanf("%I64d",&a[i]);
}
sort(a+,a++n);
memset(dp,,sizeof(dp));
dp[]=;
int p=;
for(int i=;i<=n;i++)
{
if(dp[i])//它是结尾的基础上,从下一个开始判断哪些可以作为结尾
{
p=max(p,i+k);//算过的就不用再重复算了,以防超时
//经典样例 50000 10 0
//1 1 1 1 1 1 1 1 1 1 1 ……
while(p<=n&&a[p]-a[i+]<=d)
{//如果它可以作为结尾
dp[p]=;
p++;
}
}
}
printf(dp[n]?"YES\n":"NO\n");
return ;
}
codeforces 985E Pencils and Boxes(dp+思维)的更多相关文章
- codeforces 985E Pencils and Boxes
题意: 把一个数组分成若干组,保证每组的size >= k并且一组中任意两个数字的差的绝对值 <= d,问存不存在这样的分法. 思路: 线性dp. 用dp[i]表示前i个数是否有分法. 设 ...
- codeforces 985 E. Pencils and Boxes (dp 树状数组)
E. Pencils and Boxes time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- codeforces 572 D. Minimization(dp+ 思维)
题目链接:http://codeforces.com/contest/572/problem/D 题意:给出一个序列,可以任意调整序列的顺序,使得给出的式子的值最小 题解:显然要先排一下序,然后取相邻 ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...
- Codeforces 985 E - Pencils and Boxes
E - Pencils and Boxes 思路: dp 先排个序,放进一个袋子里的显然是一段区间 定义状态:pos[i]表示小于等于i的可以作为(放进一个袋子里的)一段区间起点的离i最近的位置 显然 ...
- [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)
[BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...
- 【CF1256】Codeforces Round #598 (Div. 3) 【思维+贪心+DP】
https://codeforces.com/contest/1256 A:Payment Without Change[思维] 题意:给你a个价值n的物品和b个价值1的物品,问是否存在取物方案使得价 ...
- Codeforces Round #533 (Div. 2) C.思维dp D. 多源BFS
题目链接:https://codeforces.com/contest/1105 C. Ayoub and Lost Array 题目大意:一个长度为n的数组,数组的元素都在[L,R]之间,并且数组全 ...
- Codeforces 407B Long Path(好题 DP+思维)
题目链接:http://codeforces.com/problemset/problem/407/B 题目大意:一共n+1个房间,一个人从1走到n+1,每次经过房间都会留下一个标记,每个房间有两扇门 ...
随机推荐
- crm开发(基于ssh)(2)
今天内容 1 新增客户 2 客户列表 3 修改客户 4 删除客户 5 分页显示客户列表 Hibernate模板里面的方法 1 新增客户 配置 <mapping resource="cn ...
- canvas画的北斗七星和大熊座
用canvas画的北斗七星和大熊座,主要用到的知识点是:canvas.定时器. html代码: <body> <canvas id="canvas" width= ...
- HYSBZ - 2301 莫比乌斯反演
链接 题解:直接用公式算,用容斥来减掉重复计算的部分 但是我犯了一个非常sb的错误,直接把abcd除k了,这样算a-1的时候就错了,然后举的例子刚好还没问题= = ,结果wa了好几发 //#pragm ...
- Quartz快速入门
Quartz是一个定时任务调度的框架,在预定的时间到达时,执行某一任务 可认为是JDK的Timer类的扩展 Quartz的核心接口Scheduler – 核心调度器Job – 任务JobDetail ...
- Java中的深拷贝(深复制)和浅拷贝(浅复制)
深拷贝(深复制)和浅拷贝(浅复制)是两个比较通用的概念,尤其在C++语言中,若不弄懂,则会在delete的时候出问题,但是我们在这幸好用的是Java.虽然java自动管理对象的回收,但对于深拷贝(深复 ...
- jQuery中this与$(this)的区别
起初以为this和$(this)就是一模子刻出来.但是我在阅读时,和coding时发现,总不是一回事,这里就谈谈this与$(this)的区别. jQuery中this与$(this)的区别 $(&q ...
- win7 秘钥
链接 安装好Windows7后右击计算机--属性--更改产品密匙 输入以下密匙; RHTBY-VWY6D-QJRJ9-JGQ3X-Q2289 HT6VR-XMPDJ-2VBFV-R9PFY-3VP7R ...
- Elasticsearch安装 + Head插件安装 + Bigdesk插件安装
一.Elasticsearch安装 1.官网下载zip包:https://www.elastic.co/downloads/elasticsearch 2.解压到自己指定的文件夹 3.运行\bin\e ...
- 【解题报告】[动态规划]-PID69 / 过河卒
原题地址:http://www.rqnoj.cn/problem/69 解题思路: 用DP[i][j]表示到达(i,j)点的路径数,则 DP[0][0]=1 DP[i][j]=DP[i-1][j]+D ...
- NETCore中RabbitMQ的使用
NET中RabbitMQ的使用 https://www.cnblogs.com/xibei666/p/5931267.html 概述 MQ全称为Message Queue, 消息队列(MQ)是一种应用 ...