UESTC - 1652 递推方程
方程很简单,每一公里往上推就行
WA了2发,忘了单通道时的特判,还有n m傻傻分不清,忘了fixed什么的我好弱啊QAQ..
#include<bits/stdc++.h>
#define rep(i,j,k) for(int i=j;i<=k;i++)
using namespace std;
double dp[2][30010];
vector<int> vec[1003];
int n,m,p,k,a,b;
int main(){
ios::sync_with_stdio(0);
while(cin>>m>>k>>n>>p){
memset(dp,0,sizeof dp);dp[0][p]=1;
memset(vec,0,sizeof vec);
rep(i,1,k){
cin>>a>>b;
vec[b].push_back(a);
}
rep(i,1,n) sort(vec[i].begin(),vec[i].end());
vector<int>::iterator it;
if(m>=2) rep(i,0,n-1){
memset(dp[i+1&1],0,sizeof dp[i+1&1]);
rep(j,1,m) if( ( it = find(vec[i+1].begin(),vec[i+1].end(),j) ) !=vec[i+1].end() ) dp[i+1&1][j]=-6666666;
rep(j,1,m){
if(dp[i&1][j]<=0) continue;
if(j==1){
if(dp[i+1&1][j+1]>=0) dp[i+1&1][j+1]+=1.0/2.0*dp[i&1][j];
if(dp[i+1&1][j]>=0) dp[i+1&1][j]+=1.0/2.0*dp[i&1][j];
}
else if(j==m){
if(dp[i+1&1][j-1]>=0) dp[i+1&1][j-1]+=1.0/2.0*dp[i&1][j];
if(dp[i+1&1][j]>=0) dp[i+1&1][j]+=1.0/2.0*dp[i&1][j];
}
else{
if(dp[i+1&1][j]>=0) dp[i+1&1][j]+=1.0/3.0*dp[i&1][j];
if(dp[i+1&1][j-1]>=0) dp[i+1&1][j-1]+=1.0/3.0*dp[i&1][j];
if(dp[i+1&1][j+1]>=0) dp[i+1&1][j+1]+=1.0/3.0*dp[i&1][j];
}
}
}
else{
bool flag=0;
rep(i,1,n) if((it=find(vec[i].begin(),vec[i].end(),1))!=vec[i].end()) flag=1;
if(flag==1) cout<<"0.000000"<<endl;
else cout<<"1.000000"<<endl;
continue;
}
double ans=0;
rep(j,1,m) if( ( it = find(vec[n].begin(),vec[n].end(),j) ) !=vec[n].end() ) dp[n&1][j]=-1;
rep(i,1,m) ans+=(dp[n&1][i]<=0?0:dp[n&1][i]);
cout<<fixed<<setprecision(6)<<ans<<endl;
}
return 0;
}
UESTC - 1652 递推方程的更多相关文章
- UESTC - 1610 递推方程+矩阵快速幂
感觉像是HDU Keyboard的加强版,先推出3张牌时的所有组合,然后递推出n张牌 看到n=1e18时吓尿了 最后24那里还是推错了.. (5行1列 dp[1][n],dp[2][n],dp[3][ ...
- [原]hdu2045 不容易系列三——LELE的RPG难题 (递推方程)
本文出自:blog.csdn.net/svitter 原题:http://acm.hdu.edu.cn/showproblem.php?pid=2045 题意:中文不用我说了吧. 这个题目的关键就在于 ...
- 求解线性递推方程第n项的一般方法
概述 系数为常数,递推项系数均为一次的,形如下面形式的递推式,称为线性递推方程. \[f[n]=\begin{cases} C &n\in Value\\ a_1 f[n-1]+a_2 f[n ...
- hdu3483 A Very Simple Problem 非线性递推方程2 矩阵快速幂
题目传送门 题目描述:给出n,x,mod.求s[n]. s[n]=s[n-1]+(x^n)*(n^x)%mod; 思路:这道题是hdu5950的进阶版.大家可以看这篇博客hdu5950题解. 由于n很 ...
- [HDOJ2604]Queuing(递推,矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 递推式是百度的,主要是练习一下如何使用矩阵快速幂优化. 递推式:f(n)=f(n-1)+f(n- ...
- 【高精度递推】【HDU1297】Children’s Queue
Children's Queue Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- Luogu 1962 斐波那契数列(矩阵,递推)
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...
- POJ 3734 Blocks 矩阵递推
POJ3734 比较简单的递推题目,只需要记录当前两种颜色均为偶数, 只有一种颜色为偶数 两种颜色都为奇数 三个数量即可,递推方程相信大家可以导出. 最后来个快速幂加速即可. #include< ...
随机推荐
- Openssl genpkey命令
一.简介 genpkey命令用于产生各种密钥(RSA.DSA.DH.EC等)的私钥值. 二.语法 openssl genpkey [-out filename] [-outform PEM | DER ...
- xgboost 完全调参指南
http://www.2cto.com/kf/201607/528771.html xgboost: https://www.analyticsvidhya.com/blog/2016/03/comp ...
- redirect_uri域名与后台配置不一致,错误码:10003
登录公众平台,重新配置下网页授权域名就可以了 参考https://blog.csdn.net/haoxuexiaolang/article/details/79432073
- Mbatis——动态SQL
<?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE mapper PUBLIC "- ...
- Java WEB中的servlet
1.什么是servlet 2.servlet实现的过程 3.servlet的生命周期 4.servlet实现类及实现方法 什么是servlet Servlet 是在服务器上运行的小程序.这个词是在 J ...
- Matlab和Python用于深度学习应用研究哪个好?
Matlab和Python都有一些关于深度学习的开源的解决方案(caffe\DeepMind\TensorFlow),基于哪个开展应用研究好?
- SQL之DCL
DCL(Data Control Language)数据库控制语言 授权,角色控制等GRANT 授权REVOKE 取消授权 1)授权命令 grant,语法格式(SQL语句不区分大小写):Grant ...
- POJ - 2965 The Pilots Brothers' refrigerator(压位+bfs)
The game “The Pilots Brothers: following the stripy elephant” has a quest where a player needs to op ...
- Azure SQL作業
由於要定期去刪除比較久的資料,礙於Azure SQL DB目前無法直接創建作業,目前找到一種方式就是通過local的SQL SERVER來執行AZURE SQL指令. 步驟如下: SQL Server ...
- IIS部署SSL,.crt .key 的证书,怎么部署到IIS
SSL连接作用不说,百度很多.因为最近想考虑重构一些功能,在登录这块有打算弄成HTTPS的,然后百度了,弄成了,就记录一下,以便以后万一部署的时候忘记掉. 做实验的时候,拿的我个人申请的已经备案的域名 ...