【洛谷2709】小B的询问(莫队模板题)
大致题意: 有一个长度为\(N\)的序列,每个数字在\(1\sim K\)之间,有\(M\)个询问,每个询问给你一个区间,让你求出\(\sum_{i=1}^K c(i)^2\),其中\(c(i)\)表示数字\(i\)在该区间内的出现次数。
莫队算法
显然,这题可以用莫队算法来做,而这题本身就是莫队算法的一道模板题。
代码
#include<bits/stdc++.h>
#define N 50000
#define M 50000
using namespace std;
int n,Q,k,a[N+5],pos[N+5],cnt[N+5],ans[M+5];
struct Query
{
int l,r,pos;
}q[M+5];
inline char tc()
{
static char ff[100000],*A=ff,*B=ff;
return A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0;char ch;
while(!isdigit(ch=tc()));
while(x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
}
inline void write(int x)
{
if(x>9) write(x/10);
putchar(x%10+'0');
}
bool cmp(Query x,Query y)
{
return pos[x.l]<pos[y.l]||(pos[x.l]==pos[y.l]&&(pos[x.l]&1?x.r<y.r:x.r>y.r));
}
int main()
{
register int i;
read(n),read(Q),read(k);
for(i=1;i<=n;++i) read(a[i]),pos[i]=(i-1)/sqrt(n)+1;//边读入,边将序列分块
for(i=1;i<=Q;++i) read(q[i].l),read(q[i].r),q[i].pos=i;//存储下来每一个询问
sort(q+1,q+Q+1,cmp);//将询问以l所在的块为第一关键字,r的值为第二关键字sort一遍
int L=q[1].l,R=q[1].r;//将L指针和R指针预处理为指向第一个询问的l和r
for(i=q[1].l;i<=q[1].r;++i)//暴力求解第一个询问
ans[q[1].pos]-=cnt[a[i]]*cnt[a[i]],++cnt[a[i]],ans[q[1].pos]+=cnt[a[i]]*cnt[a[i]];
for(i=2;i<=Q;++i)//对每一个询问依次求解
{
ans[q[i].pos]=ans[q[i-1].pos];
while(L<q[i].l) ans[q[i].pos]-=cnt[a[L]]*cnt[a[L]],--cnt[a[L]],ans[q[i].pos]+=cnt[a[L]]*cnt[a[L]],++L;//若L小于当前询问的l,则更新ans,并将L加1
while(L>q[i].l) --L,ans[q[i].pos]-=cnt[a[L]]*cnt[a[L]],++cnt[a[L]],ans[q[i].pos]+=cnt[a[L]]*cnt[a[L]];//若L大于当前询问的l,则将L减1,并更新ans(注意,这里改变L值和更新ans的顺序与上一个操作不同)
while(R>q[i].r) ans[q[i].pos]-=cnt[a[R]]*cnt[a[R]],--cnt[a[R]],ans[q[i].pos]+=cnt[a[R]]*cnt[a[R]],--R;//类似于上面的操作
while(R<q[i].r) ++R,ans[q[i].pos]-=cnt[a[R]]*cnt[a[R]],++cnt[a[R]],ans[q[i].pos]+=cnt[a[R]]*cnt[a[R]];//类似于上面的操作
}
for(i=1;i<=Q;++i) write(ans[i]),putchar('\n');//对每一个答案按照读入顺序输出
return 0;
}
【洛谷2709】小B的询问(莫队模板题)的更多相关文章
- 洛谷.2709.小B的询问(莫队)
题目链接 /* 数列的最大值保证<=50000(k),可以直接用莫队.否则要离散化 */ #include<cmath> #include<cstdio> #includ ...
- 洛谷P2709 小B的询问 莫队
小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小 ...
- 洛谷P2709 小B的询问 莫队做法
题干 这个是用来学莫队的例题,洛谷详解 需要注意的一点,一定要分块!不然会慢很多(直接TLE) 其中分块只在排序的时候要用,并且是给问题右端点分块 再就是注意add与del函数里的操作,增加数量不提, ...
- 莫队 [洛谷2709] 小B的询问[洛谷1903]【模板】分块/带修改莫队(数颜色)
莫队--------一个优雅的暴力 莫队是一个可以在O(n√n)内求出绝大部分无修改的离线的区间问题的答案(只要问题满足转移是O(1)的)即你已知区间[l,r]的解,能在O(1)的时间内求出[l-1, ...
- 洛谷2709 小B的询问(莫队)
题面 题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R] ...
- luogu 2709 小B的询问 莫队
题目链接 Description 小B有一个序列,包含\(N\)个\(1-K\)之间的整数.他一共有\(M\)个询问,每个询问给定一个区间\([L..R]\),求\(\sum_{i=1}^{K}c_i ...
- luogu 2709小b的询问--莫队
https://www.luogu.org/problemnew/show/P2709 无修改的莫队几乎没有什么太高深的套路,比较模板吧,大多都是在那两个函数上动手脚. 这题询问每一种数字数量的平方和 ...
- 洛谷——P2709 小B的询问
P2709 小B的询问 莫队算法,弄两个指针乱搞即可 这应该是基础莫队了吧 $x^2$可以拆成$((x-1)+1)^2$,也就是$(x-1)^2+1^2+2\times (x-1)$,那么如果一个数字 ...
- [题解]洛谷P2709 小B的询问
地址 是一道莫队模板题. 分析 设\(\text{vis[i]}\)表示元素\(\text{i}\)出现的次数 当一个元素进入莫队时,它对答案的贡献增加.有\(\delta Ans=(X+1)^2-X ...
- 【luogu1709】小B的询问 - 莫队
题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...
随机推荐
- JAVA实体类不要使用基本类型,基本类型包含byte、int、short、long、float、double、char、boolean
由于JAVA的基本类型会有默认值,例如当某个类中存在private int age;字段时,创建这个类时,age会有默认值0.当使用age属性时,它总会有值.因此在某些情况下,便无法实现age为nu ...
- linux 基础运维 之 Linux的闹钟
1. linux 删除一个文件的权限要看文件所在的目录的权限 删除文件需要对对这个目录拥有w权限 修改文件 查看文件的内容需要对文件有rw权限 删除 创建一个文件 需要对文件坐在地目录拥有wx权限2. ...
- 利用paramiko的demo_simple.py进行日志记录时遇到的特殊字符
特殊字符列表: 回车 "\r" "\x13" 响铃 "\x07" 换行 "\n" "\x10" &q ...
- 解决dns服务器未找到问题 &&DNS解析服务器&&连接问题
第一部分: 有时已经连接到了网络,但是却提示未找到dns服务器,或未连接dns服务器,这多是因为dns设置的问题.下面是几种可行的解决方法. 方法一: 1. win + R -> cmd - ...
- node之Express框架
Express是node的框架,通过Express我们快速搭建一个完整的网站,而不再只是前端了!所以Express还是非常值得学习的! express有各种中间件,我们可以在官方网站查询其用法. Ex ...
- poi 多行合并
poi做多行合并,一定需要先绘制单元格,然后写入数据,最后合并,不然各种坑啊. 合并单元格所使用的方法: sheet.addMergedRegion( CellRangeAddress cellRa ...
- 操蛋的Django model------select_related() 主要用于一对一和一对多
实例: 创建表,表都是一对一,一对多 class Province(models.Model): name = models.CharField(max_length=10) class City(m ...
- 【SoapUI】http接口测试
一.接口介绍 API(Application Programming Interface,应用程序编程接口) 1.硬件接口 USB接口 硬盘接口 SD卡接口 LAN口和WAN口 CONSOLE口 .. ...
- js判断下拉框改变状态
<script> $('#questSort').change(function(){ //此处写状态改变要实现的功能 var s=$('#questSort').children('op ...
- JVM如何加载一个类的过程,双亲委派模型中有哪些方法
1.类加载过程:加载.验证.准备.解析.初始化 加载 在加载阶段,虚拟机主要完成三件事: 1.通过一个类的全限定名来获取定义此类的二进制字节流. 2.将这个字节流所代表的静态存储结构转化为方法 ...