/*
普里姆算法的主要思想:
利用二维数组把权值放入,然后找在当前顶点的最小权值,然后走过的路用一个数组来记录
*/
# include <stdio.h> typedef char VertexType;//定义顶点类型
typedef int EdgeType;//定义边上的权值类型
# define MAX_VERTEX //最大顶点个数
# define INFINITY //用65535代表无穷大 typedef struct
{//邻接矩阵存储结构
VertexType vexs[MAX_VERTEX];//顶点表
EdgeType arc[MAX_VERTEX][MAX_VERTEX];//邻接矩阵
int numVertexs, numEdges;//图中当前的顶点数和边数 }MGraph; void CreateMGraph(MGraph *G)
{
int i, j;
G->numEdges=;
G->numVertexs=; for (i = ; i < G->numVertexs; i++)
{
for ( j = ; j < G->numVertexs; j++)
{
if (i==j)
G->arc[i][j]=;
else
G->arc[i][j] = G->arc[j][i] = INFINITY;
}
} G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=; for(i = ; i < G->numVertexs; i++)
{
for(j = i; j < G->numVertexs; j++)
{
G->arc[j][i] =G->arc[i][j];
}
} } void MinSpanTree_Peim (MGraph &G)
{//普里姆算法,最小生成树
int min, i, j, k;
int add=;
int adjvex[MAX_VERTEX];
int lowcost[MAX_VERTEX];
lowcost[] = ;
adjvex[] = ; for (i=; i<G.numVertexs; i++)
{//若是从v0顶点开始查找,从顶点v0的矩阵全部赋值到lowcost数组中,adjvex数组全部为0;
lowcost[i] = G.arc[][i];//二维数组存放的权值
adjvex[i] = ;//所有都为0
} for (i=; i<G.numVertexs; i++)
{//最小生成树
min = INFINITY;//无穷大
j=;
k=; while (j < G.numVertexs)
{//查找lowcost数组中最小的值,把最小的值赋给min,且最小值的下表赋给k
if (lowcost[j]!= && lowcost[j]<min)
{
min = lowcost[j];//存放最小的权值
k = j;//把存放最小权值的顶点下标
}
j++;
}
printf ("(%d——%d)\n", adjvex[k], k);
add = add + G.arc[adjvex[k]][k];
/*因为52~56行已经把adjvex数组全部赋值为0,所以一开始打印出来的就是0,后来打印出来的就是以上一个在lowcost
数组中最小值的下表(下表对应的顶点),顶点的矩阵中比当前lowcost数组中的值还要小的值的下标,和lowcost数组中最小值的下标*/
lowcost[k] = ;
//若刚才存放最小权值的顶点是1(k=1),则下面就for循环就从发1的二位数组继续寻找最小生成树
for (j=; j<G.numVertexs; j++)
{//以在lowcost数组中最小值的下表作为二位数组的第一个下标与当前lowcos数组中的值进行比较。
//查找最小值
if (lowcost[j]!= && G.arc[k][j]<lowcost[j])//t
{
lowcost[j] = G.arc[k][j];//
adjvex[j] = k;
}
}
}
printf ("%d\n", add); return;
} int main (void)
{
MGraph G;
CreateMGraph (&G);
MinSpanTree_Peim (G); return ;
} /*
在vc++6.0运行结果:
请输入顶点数和边数:9 15
请输入第1个顶点信息:v0
请输入第2个顶点信息:v1
请输入第3个顶点信息:v2
请输入第4个顶点信息:v3
请输入第5个顶点信息:v4
请输入第6个顶点信息:v5
请输入第7个顶点信息:v6
请输入第8个顶点信息:v7
请输入第9个顶点信息:v8
请输入边(vi,vj)上的下表i,下表j和权w:0 1 10
请输入边(vi,vj)上的下表i,下表j和权w:0 5 11
请输入边(vi,vj)上的下表i,下表j和权w:1 6 16
请输入边(vi,vj)上的下表i,下表j和权w:1 2 18
请输入边(vi,vj)上的下表i,下表j和权w:1 8 12
请输入边(vi,vj)上的下表i,下表j和权w:2 8 8
请输入边(vi,vj)上的下表i,下表j和权w:2 3 22
请输入边(vi,vj)上的下表i,下表j和权w:8 3 21
请输入边(vi,vj)上的下表i,下表j和权w:6 5 17
请输入边(vi,vj)上的下表i,下表j和权w:6 3 24
请输入边(vi,vj)上的下表i,下表j和权w:6 7 19
请输入边(vi,vj)上的下表i,下表j和权w:3 4 20
请输入边(vi,vj)上的下表i,下表j和权w:3 7 16
请输入边(vi,vj)上的下表i,下表j和权w:4 7 7
请输入边(vi,vj)上的下表i,下表j和权w:4 5 26
(0——1)
(0——5)
(1——8)
(8——2)
(1——6)
(6——7)
(7——4)
(7——3)
Press any key to continue */

普里姆(Prim)算法的更多相关文章

  1. 普里姆Prim算法介绍

    普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T ...

  2. 图解最小生成树 - 普里姆(Prim)算法

    我们在图的定义中说过,带有权值的图就是网结构.一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接 ...

  3. JS实现最小生成树之普里姆(Prim)算法

    最小生成树: 我们把构造连通网的最小代价生成树称为最小生成树.经典的算法有两种,普利姆算法和克鲁斯卡尔算法. 普里姆算法打印最小生成树: 先选择一个点,把该顶点的边加入数组,再按照权值最小的原则选边, ...

  4. 图的普里姆(Prim)算法求最小生成树

    关于图的最小生成树算法------普里姆算法 首先我们先初始化一张图: 设置两个数据结构来分别代表我们需要存储的数据: lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说 ...

  5. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

  6. 最小生成树-普利姆(Prim)算法

    最小生成树-普利姆(Prim)算法 最小生成树 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者 ...

  7. 图论---最小生成树----普利姆(Prim)算法

    普利姆(Prim)算法 1. 最小生成树(又名:最小权重生成树) 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一 ...

  8. 经典问题----最小生成树(prim普里姆贪心算法)

    题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈 ...

  9. 最小生成树之Prim(普里姆)算法

    关于什么是Prim(普里姆算法)? 在实际生活中,我们常常碰到类似这种一类问题:如果要在n个城市之间建立通信联络网, 则连通n个城市仅仅须要n-1条线路.这时.我们须要考虑这样一个问题.怎样在最节省经 ...

随机推荐

  1. Square Coins(母函数)

    Square Coins 点我 Problem Description People in Silverland use square coins. Not only they have square ...

  2. 今天在研究jquery用ajax提交form表单中得数据时,学习到了一种新的提交方式

    今天在研究jquery用ajax提交form表单中得数据时,学习到了一种新的提交方式 jquery中的serialize() 方法 该方法通过序列化表单值,创建 URL 编码文本字符串 序列化的值可在 ...

  3. File.ReadAllText 读取中文乱码问题

    原文:File.ReadAllText 读取中文乱码问题 用 File.ReadAllText(filepath)   去读取中文txt文件会遇到乱码问题,我自己测试了一下,ANSI编码的txt才会出 ...

  4. eclipse启动tomcat 访问http://localhost:8080 报404错误

    eclipse启动tomcat 访问http://localhost:8080 报404错误 Server Locations修改后会变灰,如果需要更改设置,则需要移除与Tomcat服务器关联的项目, ...

  5. C链表之创建简单静态链表

    C代码: #include<stdio.h> #include<stdlib.h> #include<malloc.h> //创建简单静态链表 typedef st ...

  6. 【LeetCode练习题】First Missing Positive

    First Missing Positive Given an unsorted integer array, find the first missing positive integer. For ...

  7. c++崩溃错误2

    使用了内联函数: 在头文件中声明和定义内联函数是正确的 但是在头文件中声明内联函数,而在.cpp文件中定义了内联函数会导致崩溃的 .h class stu{ inline void str(): } ...

  8. Android的Bitmap和BitmapDrawable类解析-android学习之旅(六十)

    使用简单图片 使用Drawable对象 bitmap和BitmapDrawable对象 package peng.liu.test; import android.app.Activity; impo ...

  9. linux 内核源代码分析 - 获取数组的大小

    #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) 測试程序: #include<stdio.h> #include<stdlib. ...

  10. sticker.js贴纸效果

    http://stickerjs.cmiscm.com/ <div class="sticker gbtags"></div> <!-- 引用Java ...