Power NetworkTime Limit:5000MS    Memory Limit:32768KB    64bit IO Format:%lld
& %llu

Appoint description:

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <=
c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line
(u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=sum of c(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

name=0000%2F1734%2F1734-2.gif" alt="" height="195" width="396">

An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed
is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

There are several data sets in the input text file. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data
triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc
doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input.
Input data terminate with an end of file and are correct.

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The
second data set encodes the network from figure 1.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20

7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7

(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5

(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15

6

EK临接矩阵版:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=150;//点数的最大值
const int MAXM=20500;//边数的最大值
int n;
int flow[MAXN][MAXN],cap[MAXN][MAXN],p[MAXN],a[MAXN];
void Init()
{
memset(flow,0,sizeof flow);
memset(cap,0,sizeof cap);
}
int Ek(int s,int t){
queue<int>q;
int f=0;
while(1){
memset(a,0,sizeof a);
while(!q.empty())q.pop();
a[s]=INF;
q.push(s);
while(!q.empty()){
int u=q.front();q.pop();
for(int v=0;v<=n+1;v++)if(!a[v]&&cap[u][v]>flow[u][v]){
q.push(v);
p[v]=u;
a[v]=min(a[u],cap[u][v]-flow[u][v]);
}
}
if(a[t]==0)return f;
int x=t;
while(x!=s){
flow[p[x]][x]+=a[t];
flow[x][p[x]]-=a[t];
x=p[x];
}
f+=a[t];
}
return f;
}
void addedge(int u,int v,int w){
cap[u][v]+=w;
}
int main()//多源多汇点。在前面加个源点,后面加个汇点,转成单源单汇点
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int start,end;
int np,nc,m;
int u,v,z;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
{
Init();
while(m--)
{
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&z);
u++;v++;
addedge(u,v,z);
}
while(np--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(0,u,z);
}
while(nc--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(u,n+1,z);
}
start=0;
end=n+1;
int ans=Ek(start,end);
cout<<ans<<endl;
}
return 0;
}

EK临接表版:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=150;//点数的最大值
const int MAXM=20500;//边数的最大值
int n,a[MAXN],p[MAXN];
struct Edge
{
int from,to,cap,flow;
};
std::vector<Edge>edges;
std::vector<int>G[MAXN];
void addedge(int u,int v,int w){
edges.push_back((Edge){u,v,w,0});
edges.push_back((Edge){v,u,0,0});
int m=edges.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
int Ek(int s,int t){
queue<int>q;
int f=0;
while(1){
memset(a,0,sizeof a);
a[s]=INF;
q.push(s);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=0;i<G[u].size();i++){
Edge &e=edges[G[u][i]];
if(!a[e.to]&&e.cap>e.flow){
q.push(e.to);
p[e.to]=G[u][i];
a[e.to]=min(a[u],e.cap-e.flow);
}
}
}
if(a[t]==0)return f;
int x=t;
while(x!=s){
edges[p[x]].flow+=a[t];
edges[p[x]^1].flow-=a[t];
x=edges[p[x]].from;
}
f+=a[t];
}
return f;
}
int main()//多源多汇点,在前面加个源点。后面加个汇点。转成单源单汇点
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int start,end;
int np,nc,m;
int u,v,z;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
{
edges.clear();
for(int i=0;i<=n+1;i++)G[i].clear();
while(m--)
{
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&z);
u++;v++;
addedge(u,v,z);
}
while(np--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(0,u,z);
}
while(nc--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(u,n+1,z);
}
start=0;
end=n+1;
int ans=Ek(start,end);
cout<<ans<<endl;
}
return 0;
}

dinic算法版:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=150;//点数的最大值
const int MAXM=20500;//边数的最大值
int n,a[MAXN],p[MAXN];
int cur[MAXN],d[MAXN],vis[MAXN];
struct Edge
{
int from,to,cap,flow;
};
std::vector<Edge>edges;
std::vector<int>G[MAXN];
void addedge(int u,int v,int w){
edges.push_back((Edge){u,v,w,0});
edges.push_back((Edge){v,u,0,0});
int m=edges.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
int bfs(int s,int t)
{
memset(vis,0,sizeof vis);
queue<int>q;
q.push(s);
vis[s]=1;
d[s]=0;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=0;i<G[u].size();i++){
Edge &e=edges[G[u][i]];
if(!vis[e.to]&&e.cap>e.flow){
q.push(e.to);
vis[e.to]=1;
d[e.to]=d[u]+1;
}
}
}
return vis[t];
}
int dfs(int x,int a,int t){
if(x==t||a==0)return a;
int flow=0,f=0;
for(int &i=cur[x];i<G[x].size();++i){
Edge &e=edges[G[x][i]];
if(d[e.to]==d[x]+1&&(f=dfs(e.to,min(a,e.cap-e.flow),t))>0){
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0)break;
}
}
return flow;
}
int dinic(int s,int t){
int flow=0;
while(bfs(s,t)){
memset(cur,0,sizeof cur);
flow+=dfs(s,INF,t);
}
return flow;
}
int main()//多源多汇点。在前面加个源点,后面加个汇点。转成单源单汇点
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int start,end;
int np,nc,m;
int u,v,z;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
{
edges.clear();
for(int i=0;i<=n+1;i++)G[i].clear();
while(m--)
{
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&z);
u++;v++;
addedge(u,v,z);
}
while(np--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(0,u,z);
}
while(nc--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(u,n+1,z);
}
start=0;
end=n+1;
int ans=dinic(start,end);
cout<<ans<<endl;
}
return 0;
}

ISAP版:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=150;
int n,num[MAXN],p[MAXN];
int cur[MAXN],d[MAXN],vis[MAXN];
struct Edge
{
int from,to,cap,flow;
};
std::vector<Edge>edges;
std::vector<int>G[MAXN];
void addedge(int u,int v,int w){
edges.push_back((Edge){u,v,w,0});
edges.push_back((Edge){v,u,0,0});
int m=edges.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
int bfs(int s,int t)
{
memset(vis,0,sizeof vis);
queue<int>q;
q.push(s);
vis[s]=1;
//memset(d,0,sizeof d);
d[t]=d[s]=0;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=0;i<G[u].size();i++){
Edge &e=edges[G[u][i]];
if(!vis[e.to]){
q.push(e.to);
vis[e.to]=1;
d[e.to]=d[u]+1;
}
}
}
return vis[t];
}
int Augment(int s,int t){
int x=t,a=INF;
while(x!=s){
Edge &e=edges[p[x]];
a=min(a,e.cap-e.flow);
if(!a)return 0;
x=e.from;
}
x=t;
while(x!=s){
Edge &e=edges[p[x]];
e.flow+=a;
edges[p[x]^1].flow-=a;
x=e.from;
}
return a;
}
int isap(int s,int t){
int flow=0;
bfs(t,s);
memset(num,0,sizeof num);
memset(cur,0,sizeof cur);
for(int i=0;i<=n+1;i++)++num[d[i]];
int x=s;
while(d[s]<n+2)
{
if(x==t){
flow+=Augment(s,t);
x=s;
}
bool ok=false;
for(int i=cur[x];i<G[x].size();++i){
Edge &e=edges[G[x][i]];
if(e.cap>e.flow&&d[x]==d[e.to]+1){
ok=true;
cur[x]=i;
p[e.to]=G[x][i];
x=e.to;
break;
}
}
if(!ok){
int m=n+1;
for(int i=0;i<G[x].size();i++)
{
Edge &e=edges[G[x][i]];
if(e.cap>e.flow){
m=min(m,d[e.to]);
}
}
if(--num[d[x]]==0)break;
num[d[x]=m+1]++;
cur[x]=0;
if(x!=s)x=edges[p[x]].from;
}
}
return flow;
}
int main()//多源多汇点,在前面加个源点。后面加个汇点。转成单源单汇点
{
int start,end;
int np,nc,m;
int u,v,z;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
{
edges.clear();
for(int i=0;i<=n+1;i++)G[i].clear();
while(m--)
{
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&z);
u++;v++;
addedge(u,v,z);
}
while(np--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(0,u,z);
}
while(nc--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(u,n+1,z);
}
start=0;
end=n+1;
int ans=isap(start,end);
cout<<ans<<endl;
}
return 0;
}

ZOJ 1698 (最大流入门)的更多相关文章

  1. 使用Guava RateLimiter限流入门到深入

    前言 在开发高并发系统时有三把利器用来保护系统:缓存.降级和限流 缓存: 缓存的目的是提升系统访问速度和增大系统处理容量 降级: 降级是当服务出现问题或者影响到核心流程时,需要暂时屏蔽掉,待高峰或者问 ...

  2. JavaIo流入门篇之字节流基本使用。

    一 基本知识了解(  字节流, 字符流, byte,bit是啥?) /* java中字节流和字符流之前有接触过,但是一直没有深入的学习和了解. 今天带着几个问题,简单的使用字节流的基本操作. 1 什么 ...

  3. Java-io流入门到精通详细总结

    IO流:★★★★★,用于处理设备上数据. 流:可以理解数据的流动,就是一个数据流.IO流最终要以对象来体现,对象都存在IO包中. 流也进行分类: 1:输入流(读)和输出流(写). 2:因为处理的数据不 ...

  4. IO流入门-第十三章-File相关

    /* java.io.File 1.File和流无关,不能通过该类完成文件的读写 2.File是文件和目录路径名的抽象变现形式. */ import java.io.*; public class F ...

  5. IO流入门-第十二章-ObjectInputStream_ObjectOutputStream

    DataInputStream和DataOutputStream基本用法和方法示例,序列化和反序列化 import java.io.Serializable; //该接口是一个“可序列化”的 ,没有任 ...

  6. IO流入门-第十一章-PrintStream_PrintWriter

    DataInputStream和DataOutputStream基本用法和方法示例 /* java.io.PrintStream:标准的输出流,默认打印到控制台,以字节方式 java.io.Print ...

  7. IO流入门-第十章-DataInputStream_DataOutputStream

    DataInputStream和DataOutputStream基本用法和方法示例 /* java.io.DataOutputStream 数据字节输出流,带着类型写入 可以将内存中的“int i = ...

  8. IO流入门-第九章-BufferedReader_BufferedWriter复制

    利用BufferedReader和BufferedWriter进行复制粘贴 import java.io.*; public class BufferedReader_BufferedWriterCo ...

  9. IO流入门-第八章-BufferedWriter

    BufferedWriter基本用法和方法示例 import java.io.*; public class BufferedWriterTest01 { public static void mai ...

随机推荐

  1. 读jQuery源码 jQuery.data

    var rbrace = /(?:\{[\s\S]*\}|\[[\s\S]*\])$/, rmultiDash = /([A-Z])/g; function internalData( elem, n ...

  2. [剖析Javascript原理]1.原生数据类型

    一.原生数据类型 JS共有5种原生数据类型: Boolean true或者false String 字符串,在单引号或者双引号之间(不存在字符类型) Number 整数或者浮点数 Null 空 und ...

  3. 一个php创建webservice,并通过c#调用的真实实例

    最近需要用php创建webservice供C#和JAVA来调用,通过3天的搜索和尝试,终于成功在C#下调用,JAVA的调用还没开始,为防止忘记,在这里记录下来全过程. 本文参考了许多文章,文中也采用了 ...

  4. [原创]浅谈如何使用gcc开发NT核心驱动程序

    原文链接:[原创]浅谈如何使用gcc开发NT核心驱动程序 一谈到在 Win NT 下开发核心驱动程序,可能不少人首先都会想到微软“正统”的VC来.诚然,用VC 配合 WINDDK 的确工作的不错,但或 ...

  5. 密码学——网间数据加密传输全流程(SSL加密原理)

    0.导言 昨天写了一篇关于<秘钥与公钥>的文章,写的比较简单好理解,有点儿像过家家,如果详细探究起来会有不少出入,今天就来详细的说明一下数据加密的原理和过程.这个原理就是大名鼎鼎SSL的加 ...

  6. 让vs2010的html编辑器验证html5语法

    或者在Tools -> option -> Text Editor -> Html -> Validation

  7. 专题合集:深入Android媒体存储服务

    Android 有一套媒体存储服务,进程名是 android.process.media,主要负责把磁盘中的文件信息保存到数据库当中,供其他 APP 使用以及 MTP 模式使用.这里包含了数据库管理. ...

  8. Make Hadoop 1.2.1 run, my first try

    经历两天努力,8月25日下午2点40分,终于让hadoop1.2.1跑起来. 用的是<Hadoop实战第2版>(陆嘉恒)里面的WordCount例子,虽然书是2013年出的,但用的例子还是 ...

  9. [Leetcode][Python]30: Substring with Concatenation of All Words

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 30: Substring with Concatenation of All ...

  10. Vxlan 原理

    https://www.gitbook.com/book/yeasy/openstack_understand_neutron/details 自己总结一下: 分析 VTEP的情况, 即Vxlan跟V ...