(http://leetcode.com/2011/04/the-painters-partition-problem-part-ii.html)

This is Part II of the artical: The Painter's Partition Problem. Please read Part I for more background information.

Solution:

Assume that you are assigning continuous section of board to each painter such that its total length must not exceed a predefined maximum, costmax. Then, you are able to find the number of painters that is required, x. Following are some key obervations:

  • The lowest possible value for costmax must be the maximum element in A (name this as lo).
  • The highest possible value for costmax must be the entire sum of A (name this as hi).
  • As costmax increases, x decreases. The opposite also holds true.

Now, the question translates directly into:

  • How do we use binary search to find the minimum of costmax while satifying the condition x=k? The search space will be the range of [lo, hi].
int getMax(int A[], int n)
{
int max = INT_MIN;
for (int i = ; i < n; i++)
{
if (A[i] > max)
max = A[i];
}
return max;
} int getSum(int A[], int n)
{
int total = ;
for (int i = ; i < n; i++)
total += A[i];
return total;
} int getRequiredPainters(int A[], int n, int maxLengthPainter)
{
int total =;
int numPainters = ;
for (int i = ; i < n; i++)
{
total += A[i];
if (total > maxLengthPerPainter)
{
total = A[i];
numPainters++;
}
}
return numPainters;
} int partition(int A[], int n, int k)
{
if (A == NULL || n <= || k <= )
return -; int lo = getMax(A, n);
int hi = getSum(A, n); while (lo < hi)
{
int mid = lo + (hi-lo)/;
int requiredPainters = getRequiredPainter(A, n, mid);
if (requiredPainters <= k)
hi = mid;
else
lo = mid+;
}
return lo;
}

The complexity of this algorithm is O(N log(∑Ai)), which is quite efficient. Furthermore, it does not require any extra space, unlike the DP solution which requires O(kN) space.

The Painter's Partition Problem Part II的更多相关文章

  1. The Painter's Partition Problem Part I

    (http://leetcode.com/2011/04/the-painters-partition-problem.html) You have to paint N boards of leng ...

  2. 2019牛客多校第二场F Partition problem 暴力+复杂度计算+优化

    Partition problem 暴力+复杂度计算+优化 题意 2n个人分成两组.给出一个矩阵,如果ab两个在同一个阵营,那么就可以得到值\(v_{ab}\)求如何分可以取得最大值 (n<14 ...

  3. poj 1681 Painter&#39;s Problem(高斯消元)

    id=1681">http://poj.org/problem? id=1681 求最少经过的步数使得输入的矩阵全变为y. 思路:高斯消元求出自由变元.然后枚举自由变元,求出最优值. ...

  4. 2019年牛客多校第二场 F题Partition problem 爆搜

    题目链接 传送门 题意 总共有\(2n\)个人,任意两个人之间会有一个竞争值\(w_{ij}\),现在要你将其平分成两堆,使得\(\sum\limits_{i=1,i\in\mathbb{A}}^{n ...

  5. 【搜索】Partition problem

    题目链接:传送门 题面: [题意] 给定2×n个人的相互竞争值,请把他们分到两个队伍里,如果是队友,那么竞争值为0,否则就为v[i][j]. [题解] 爆搜,C(28,14)*28,其实可以稍加优化, ...

  6. 2019牛客暑期多校训练营(第二场) - F - Partition problem - 枚举

    https://ac.nowcoder.com/acm/contest/882/F 潘哥的代码才卡过去了,自己写的都卡不过去,估计跟评测机有关. #include<bits/stdc++.h&g ...

  7. 2019牛客暑期多校训练营(第二场)F.Partition problem

    链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...

  8. 2019牛客多校2 F Partition problem(dfs)

    题意: n<=28个人,分成人数相同的两组,给你2*n*2*n的矩阵,如果(i,j)在不同的组里,竞争力增加v[i][j],问你怎么分配竞争力最 4s 思路: 枚举C(28,14)的状态,更新答 ...

  9. 2019牛客多校第二场F Partition problem(暴搜)题解

    题意:把2n个人分成相同两组,分完之后的价值是val(i, j),其中i属于组1, j属于组2,已知val表,n <= 14 思路:直接dfs暴力分组,新加的价值为当前新加的人与不同组所有人的价 ...

随机推荐

  1. MFC 全部自绘控件 界面库

    http://download.csdn.net/detail/q97082645/8160793 http://download.csdn.net/user/q97082645/uploads/3

  2. Java HashSet和LinkedHashSet的用法

    Java HashSet和LinkedHashSet的用法 类HashSet和LinkedHashSet都是接口Set的实现,两者都不能保存重复的数据.主要区别是HashSet不保证集合中元素的顺序, ...

  3. [LeetCode][Python]Longest Substring Without Repeating Characters

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com'https://oj.leetcode.com/problems/longest ...

  4. inotify

    inotify,文件系统控制函数,通知机制: ioctl, io控制函数

  5. 如何给Ubuntu 安装Vmware Tools

    http://jingyan.baidu.com/article/3065b3b6e8dedabecff8a435.html

  6. 错误:类Byte是公共的,应在名为Byte.java 的文件中声明public class Byte{}一个错误

      解决:文件名是xyz,那你的这个类名也应该是xyz.

  7. oracle默认的hr用户使用脚本安装

    1 解压到%ORACLE_HOME%/demo/schema/human_resources/目录下 2 在sys或system用户下运行hr_main.sql脚本(运行命令:@%ORACLE_HOM ...

  8. WPF中常用控件的属性

    Source = new BitmapImage( new Uri( WangCaiConfig.GetCurrentDirectory() + imgStr, UriKind.RelativeOrA ...

  9. JQuery初识

    一.什么是JQuery       JQuery官方网站上是这样解释的:JQuery是一个快速简洁的JavaScript库,它可以简化HTML文档的元素遍历.事件处理.动画及Ajax交互,快速开发We ...

  10. 网络子系统48_ip协议数据帧的发送

    //ip协议与l4协议接口,l4通过此接口向下l3传递数据帧 //函数主要任务: // 1.通过路由子系统路由封包 // 2.填充l3报头 // 3.ip分片 // 4.计算校验和 // 5.衔接邻居 ...