The Painter's Partition Problem Part II
(http://leetcode.com/2011/04/the-painters-partition-problem-part-ii.html)
This is Part II of the artical: The Painter's Partition Problem. Please read Part I for more background information.
Solution:
Assume that you are assigning continuous section of board to each painter such that its total length must not exceed a predefined maximum, costmax. Then, you are able to find the number of painters that is required, x. Following are some key obervations:
- The lowest possible value for costmax must be the maximum element in A (name this as lo).
- The highest possible value for costmax must be the entire sum of A (name this as hi).
- As costmax increases, x decreases. The opposite also holds true.
Now, the question translates directly into:
- How do we use binary search to find the minimum of costmax while satifying the condition x=k? The search space will be the range of [lo, hi].
int getMax(int A[], int n)
{
int max = INT_MIN;
for (int i = ; i < n; i++)
{
if (A[i] > max)
max = A[i];
}
return max;
} int getSum(int A[], int n)
{
int total = ;
for (int i = ; i < n; i++)
total += A[i];
return total;
} int getRequiredPainters(int A[], int n, int maxLengthPainter)
{
int total =;
int numPainters = ;
for (int i = ; i < n; i++)
{
total += A[i];
if (total > maxLengthPerPainter)
{
total = A[i];
numPainters++;
}
}
return numPainters;
} int partition(int A[], int n, int k)
{
if (A == NULL || n <= || k <= )
return -; int lo = getMax(A, n);
int hi = getSum(A, n); while (lo < hi)
{
int mid = lo + (hi-lo)/;
int requiredPainters = getRequiredPainter(A, n, mid);
if (requiredPainters <= k)
hi = mid;
else
lo = mid+;
}
return lo;
}
The complexity of this algorithm is O(N log(∑Ai)), which is quite efficient. Furthermore, it does not require any extra space, unlike the DP solution which requires O(kN) space.
The Painter's Partition Problem Part II的更多相关文章
- The Painter's Partition Problem Part I
(http://leetcode.com/2011/04/the-painters-partition-problem.html) You have to paint N boards of leng ...
- 2019牛客多校第二场F Partition problem 暴力+复杂度计算+优化
Partition problem 暴力+复杂度计算+优化 题意 2n个人分成两组.给出一个矩阵,如果ab两个在同一个阵营,那么就可以得到值\(v_{ab}\)求如何分可以取得最大值 (n<14 ...
- poj 1681 Painter's Problem(高斯消元)
id=1681">http://poj.org/problem? id=1681 求最少经过的步数使得输入的矩阵全变为y. 思路:高斯消元求出自由变元.然后枚举自由变元,求出最优值. ...
- 2019年牛客多校第二场 F题Partition problem 爆搜
题目链接 传送门 题意 总共有\(2n\)个人,任意两个人之间会有一个竞争值\(w_{ij}\),现在要你将其平分成两堆,使得\(\sum\limits_{i=1,i\in\mathbb{A}}^{n ...
- 【搜索】Partition problem
题目链接:传送门 题面: [题意] 给定2×n个人的相互竞争值,请把他们分到两个队伍里,如果是队友,那么竞争值为0,否则就为v[i][j]. [题解] 爆搜,C(28,14)*28,其实可以稍加优化, ...
- 2019牛客暑期多校训练营(第二场) - F - Partition problem - 枚举
https://ac.nowcoder.com/acm/contest/882/F 潘哥的代码才卡过去了,自己写的都卡不过去,估计跟评测机有关. #include<bits/stdc++.h&g ...
- 2019牛客暑期多校训练营(第二场)F.Partition problem
链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...
- 2019牛客多校2 F Partition problem(dfs)
题意: n<=28个人,分成人数相同的两组,给你2*n*2*n的矩阵,如果(i,j)在不同的组里,竞争力增加v[i][j],问你怎么分配竞争力最 4s 思路: 枚举C(28,14)的状态,更新答 ...
- 2019牛客多校第二场F Partition problem(暴搜)题解
题意:把2n个人分成相同两组,分完之后的价值是val(i, j),其中i属于组1, j属于组2,已知val表,n <= 14 思路:直接dfs暴力分组,新加的价值为当前新加的人与不同组所有人的价 ...
随机推荐
- MFC 全部自绘控件 界面库
http://download.csdn.net/detail/q97082645/8160793 http://download.csdn.net/user/q97082645/uploads/3
- Java HashSet和LinkedHashSet的用法
Java HashSet和LinkedHashSet的用法 类HashSet和LinkedHashSet都是接口Set的实现,两者都不能保存重复的数据.主要区别是HashSet不保证集合中元素的顺序, ...
- [LeetCode][Python]Longest Substring Without Repeating Characters
# -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com'https://oj.leetcode.com/problems/longest ...
- inotify
inotify,文件系统控制函数,通知机制: ioctl, io控制函数
- 如何给Ubuntu 安装Vmware Tools
http://jingyan.baidu.com/article/3065b3b6e8dedabecff8a435.html
- 错误:类Byte是公共的,应在名为Byte.java 的文件中声明public class Byte{}一个错误
解决:文件名是xyz,那你的这个类名也应该是xyz.
- oracle默认的hr用户使用脚本安装
1 解压到%ORACLE_HOME%/demo/schema/human_resources/目录下 2 在sys或system用户下运行hr_main.sql脚本(运行命令:@%ORACLE_HOM ...
- WPF中常用控件的属性
Source = new BitmapImage( new Uri( WangCaiConfig.GetCurrentDirectory() + imgStr, UriKind.RelativeOrA ...
- JQuery初识
一.什么是JQuery JQuery官方网站上是这样解释的:JQuery是一个快速简洁的JavaScript库,它可以简化HTML文档的元素遍历.事件处理.动画及Ajax交互,快速开发We ...
- 网络子系统48_ip协议数据帧的发送
//ip协议与l4协议接口,l4通过此接口向下l3传递数据帧 //函数主要任务: // 1.通过路由子系统路由封包 // 2.填充l3报头 // 3.ip分片 // 4.计算校验和 // 5.衔接邻居 ...