The Painter's Partition Problem Part II
(http://leetcode.com/2011/04/the-painters-partition-problem-part-ii.html)
This is Part II of the artical: The Painter's Partition Problem. Please read Part I for more background information.
Solution:
Assume that you are assigning continuous section of board to each painter such that its total length must not exceed a predefined maximum, costmax. Then, you are able to find the number of painters that is required, x. Following are some key obervations:
- The lowest possible value for costmax must be the maximum element in A (name this as lo).
- The highest possible value for costmax must be the entire sum of A (name this as hi).
- As costmax increases, x decreases. The opposite also holds true.
Now, the question translates directly into:
- How do we use binary search to find the minimum of costmax while satifying the condition x=k? The search space will be the range of [lo, hi].
int getMax(int A[], int n)
{
int max = INT_MIN;
for (int i = ; i < n; i++)
{
if (A[i] > max)
max = A[i];
}
return max;
} int getSum(int A[], int n)
{
int total = ;
for (int i = ; i < n; i++)
total += A[i];
return total;
} int getRequiredPainters(int A[], int n, int maxLengthPainter)
{
int total =;
int numPainters = ;
for (int i = ; i < n; i++)
{
total += A[i];
if (total > maxLengthPerPainter)
{
total = A[i];
numPainters++;
}
}
return numPainters;
} int partition(int A[], int n, int k)
{
if (A == NULL || n <= || k <= )
return -; int lo = getMax(A, n);
int hi = getSum(A, n); while (lo < hi)
{
int mid = lo + (hi-lo)/;
int requiredPainters = getRequiredPainter(A, n, mid);
if (requiredPainters <= k)
hi = mid;
else
lo = mid+;
}
return lo;
}
The complexity of this algorithm is O(N log(∑Ai)), which is quite efficient. Furthermore, it does not require any extra space, unlike the DP solution which requires O(kN) space.
The Painter's Partition Problem Part II的更多相关文章
- The Painter's Partition Problem Part I
(http://leetcode.com/2011/04/the-painters-partition-problem.html) You have to paint N boards of leng ...
- 2019牛客多校第二场F Partition problem 暴力+复杂度计算+优化
Partition problem 暴力+复杂度计算+优化 题意 2n个人分成两组.给出一个矩阵,如果ab两个在同一个阵营,那么就可以得到值\(v_{ab}\)求如何分可以取得最大值 (n<14 ...
- poj 1681 Painter's Problem(高斯消元)
id=1681">http://poj.org/problem? id=1681 求最少经过的步数使得输入的矩阵全变为y. 思路:高斯消元求出自由变元.然后枚举自由变元,求出最优值. ...
- 2019年牛客多校第二场 F题Partition problem 爆搜
题目链接 传送门 题意 总共有\(2n\)个人,任意两个人之间会有一个竞争值\(w_{ij}\),现在要你将其平分成两堆,使得\(\sum\limits_{i=1,i\in\mathbb{A}}^{n ...
- 【搜索】Partition problem
题目链接:传送门 题面: [题意] 给定2×n个人的相互竞争值,请把他们分到两个队伍里,如果是队友,那么竞争值为0,否则就为v[i][j]. [题解] 爆搜,C(28,14)*28,其实可以稍加优化, ...
- 2019牛客暑期多校训练营(第二场) - F - Partition problem - 枚举
https://ac.nowcoder.com/acm/contest/882/F 潘哥的代码才卡过去了,自己写的都卡不过去,估计跟评测机有关. #include<bits/stdc++.h&g ...
- 2019牛客暑期多校训练营(第二场)F.Partition problem
链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...
- 2019牛客多校2 F Partition problem(dfs)
题意: n<=28个人,分成人数相同的两组,给你2*n*2*n的矩阵,如果(i,j)在不同的组里,竞争力增加v[i][j],问你怎么分配竞争力最 4s 思路: 枚举C(28,14)的状态,更新答 ...
- 2019牛客多校第二场F Partition problem(暴搜)题解
题意:把2n个人分成相同两组,分完之后的价值是val(i, j),其中i属于组1, j属于组2,已知val表,n <= 14 思路:直接dfs暴力分组,新加的价值为当前新加的人与不同组所有人的价 ...
随机推荐
- WINDOWS硬件通知应用程序的常方法(五种方式:异步过程调用APC,事件方式VxD,消息方式,异步I/O方式,事件方式WDM)
摘要:在目前流行的Windows操作系统中,设备驱动程序是操纵硬件的最底层软件接口.为了共享在设备驱动程序设计过程中的经验,给出设备驱动程序通知应用程序的5种方法,详细说明每种方法的原理和实现过程,并 ...
- Qt窗口的标题栏自绘
因个人需要,要修改Qt Widget的标题栏,网上找了大半天,没有得到答案,但发现问的人比较多 所以现将找到的此文分享一下. (原文:http://www.qtsoftware.com/develop ...
- Android 检测SD卡应用
Android 检测SD卡应用 // Environment.MEDIA_MOUNTED // sd卡在手机上正常使用状态 // ...
- gdb的user-define command
搜索: user-defined例子. # save this file in ~/.gdb or some where easy to find. # then in ~/.gdbinit add ...
- CSSOM View Module
就在8月份,也就是上次gf大姨妈来的时候,W3C出炉了CSSOM视图模块(CSS Object Model View)草案.CSSOM视图模块(CSSOM View Module)定义了一些 API, ...
- DZY的根(思维水)
DZY的根[问题描述]DZY是个没有根的人,他十分想要有根,这样才能...智商爆表的计算机大神WJC决定再帮帮他,他用程序制造了N个根——有生命的根!这N个根和WJC一样都十分机智,他们要参加国际象棋 ...
- HDU 3046 Pleasant sheep and big big wolf(最小割)
HDU 3046 Pleasant sheep and big big wolf 题目链接 题意:一个n * m平面上,1是羊.2是狼,问最少要多少围墙才干把狼所有围住,每有到达羊的路径 思路:有羊和 ...
- SAN实现
Linux 上主要有三个 iSCSI Target(基于internet scsi协议的target) 实现: Linux SCSI Target – STGT / tgt Linux-IO Targ ...
- CSS3六边形
<!DOCTYPE html> <!-- saved from url=(0043)http://dbox.whosemind.net/demo/liufang.html --> ...
- Asp.Net请求处理机制中IsApiRuntime解析
今天看了web请求的生命周期,看完了还有些不懂,就是用反编译工具,查看封装内库的内部实现. 从计算机内部查到web.dll,使用反编译工具打开 打开后 public int ProcessReques ...