有限制的最多就K个, 所以我们处理一下这K个就行了. 其他可以任选, 贡献都是∑i (1≤i≤N), 用快速幂。

-------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
typedef pair<int, int> pii;
typedef long long ll;
 
const int maxn = 100009;
const int MOD = 1000000007;
 
int N, M, K, sum, ans = 1;
pii x[maxn];
 
void Init() {
scanf("%d%d%d", &N, &M, &K);
sum = ll(N) * (1 + N) / 2 % MOD;
for(int i = 0; i < K; i++)
scanf("%d%d", &x[i].first, &x[i].second);
sort(x, x + K);
K = unique(x, x + K) - x;
}
 
int Power(int x, int t) {
int ret = 1;
for(; t; t >>= 1, x = ll(x) * x % MOD)
if(t & 1) ret = ll(x) * ret % MOD;
return ret;
}
 
void upd(int &x, int t) {
if((x -= t) < 0)
x += MOD;
}
 
void Solve() {
int p = -1, cnt = 1, c = 0;
for(int i = 0; i < K; i++) if(x[i].first == p)
upd(cnt, x[i].second);
else {
if(~p)
ans = ll(ans) * cnt % MOD;
c++;
p = x[i].first;
upd(cnt = sum, x[i].second);
}
ans = ll(ans) * cnt % MOD * Power(sum, M - c) % MOD;
printf("%d\n", ans);
}
 
int main() {
Init();
Solve();
return 0;
}

-------------------------------------------------------------------

2751: [HAOI2012]容易题(easy)

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1416  Solved: 607
[Submit][Status][Discuss]

Description

为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:
有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 mod 1000000007的值,是不是很简单呢?呵呵!

Input

第一行三个整数n,m,k分别表示数列元素的取值范围,数列元素个数,以及已知的限制条数。
接下来k行,每行两个正整数x,y表示A[x]的值不能是y。

Output

一行一个整数表示所有可能的数列的积的和对1000000007取模后的结果。如果一个合法的数列都没有,答案输出0。

Sample Input

3 4 5
1 1
1 1
2 2
2 3
4 3

Sample Output

90
样例解释
A[1]不能取1
A[2]不能去2、3
A[4]不能取3
所以可能的数列有以下12种
数列 积
2 1 1 1 2
2 1 1 2 4
2 1 2 1 4
2 1 2 2 8
2 1 3 1 6
2 1 3 2 12
3 1 1 1 3
3 1 1 2 6
3 1 2 1 6
3 1 2 2 12
3 1 3 1 9
3 1 3 2 18

HINT

数据范围

30%的数据n<=4,m<=10,k<=10

另有20%的数据k=0

70%的数据n<=1000,m<=1000,k<=1000

100%的数据 n<=109,m<=109,k<=105,1<=y<=n,1<=x<=m

Source

BZOJ 2751: [HAOI2012]容易题(easy)( )的更多相关文章

  1. BZOJ 2751: [HAOI2012]容易题(easy) 数学

    2751: [HAOI2012]容易题(easy) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2751 Description 为了使 ...

  2. bzoj 2751 [HAOI2012]容易题(easy)(数学)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2751 [题意] m个位置,已知每个位置的可能取值,问所有可能情况的每个位置的乘积的和. ...

  3. 2751: [HAOI2012]容易题(easy)

    2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1087  Solved: 477[Submit][ ...

  4. BZOJ2751: [HAOI2012]容易题(easy)

    2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 872  Solved: 377[Submit][S ...

  5. 【bzoj2751】[HAOI2012]容易题(easy) 数论-快速幂

    [bzoj2751][HAOI2012]容易题(easy) 先考虑k=0的情况 那么第一个元素可能为[1,n] 如果序列长度为m-1时的答案是ans[m-1] 那么合并得 然后同理答案就是 k很小 而 ...

  6. 【bzoj2751】[HAOI2012]容易题(easy) 数论,简单题

    Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪 ...

  7. 2018.11.07 bzoj2751: [HAOI2012]容易题(easy)(组合数学)

    传送门 组合数学一眼题. 感觉一直做这种题智商会降低. 利用组合数学的分步计数原理. 只用关心每个数不被限制的取值的总和然后乘起来就可以了. 对于大部分数都不会被限制,总和都是n(n+1)2\frac ...

  8. BZOJ 2751 容易题(easy) 快速幂+快速乘

    2751: [HAOI2012]容易题(easy) Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i] ...

  9. [HAOI2012] 容易题[母函数]

    794. [HAOI2012] 容易题 ★★☆   输入文件:easy.in   输出文件:easy.out   简单对比时间限制:1 s   内存限制:128 MB 秒 输入:easy.in 输出: ...

随机推荐

  1. 【每天一个Linux命令】12. Linux中which命令的用法

    which  用来查看可执行文件的位置. 1.命令格式: which 可执行文件名称 2.命令功能: which指令会在PATH变量指定的路径中,搜索某个系统命令的位置,并且返回第一个搜索结果. 3. ...

  2. hdu4288 Coder

    Coder Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  3. 柯南君:看大数据时代下的IT架构(5)消息队列之RabbitMQ--案例(Work Queues起航)

    二.Work Queues(using the Java Client) 走起   在第上一个教程中我们写程序从一个命名队列发送和接收消息.在这一次我们将创建一个工作队列,将用于分发耗时的任务在多个工 ...

  4. OpenNebula openldap集成

    Preface: 当前写这篇post的心情可谓是即激动,又操蛋!............................ ruiy还是言归正传,人老了,赖的扯淡了,哥当前一心看向Tech(s),做个顾 ...

  5. saiku中多cube排序问题

    如题,一个schema中如果有多个cube(常有),那cube之间是如何排序显示的? 我们看一下OlapMetaExplorer.java文件的getConnection方法,其中有一行 Collec ...

  6. LeetCode第四题,Add Two Numbers

    题目原文: You are given two linked lists representing two non-negative numbers. The digits are stored in ...

  7. Linux下安装Oracle的过程和涉及的知识点-系列4

    10.使用rpm安装包 假设本地有现成的相关包,能够直接使用rpm安装.rpm rpm包名,但有时会出现它须要其他包的支持,这时若须要忽略此提示.强行安装,运行rpm -i --force --nod ...

  8. EF 4.0 更新数据时候的一个错误及其处理

    错误如图: 修改下方法后可以进行更新了.但是中间多了一步查询 /// <summary> /// 更新一个产品分类 /// </summary> /// <param n ...

  9. HTML之学习笔记(四)格式化标签和特殊字符

    html常用的格式化标签使用如下 <html> <head> <title></title> </head> <body > & ...

  10. ES6 JavaScript Promise的感性认知

    http://www.zhangxinxu.com/wordpress/2014/02/es6-javascript-promise-感性认知/ 这篇文章讲的很透彻 http://www.zhangx ...