Wall

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 3779    Accepted Submission(s): 1066

Problem Description
Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall
towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources
to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build
the wall.

Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements.








The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices
in feet.
 
Input
The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to
the castle.



Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides
of the castle do not intersect anywhere except for vertices.
 
Output
Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers
are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.



This problem contains multiple test cases!



The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.



The output format consists of N output blocks. There is a blank line between output blocks.
 
Sample Input
1 9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200
 
Sample Output
1628
 
Source
 
Recommend
JGShining   |   We have carefully selected several similar problems for you:  2150 1147 1558 2202 1374 
 

Statistic | Submit | Discuss | Note

 

题目本身不多说了

ANS=凸包周长+2*R*L 很容易证明

Graham算法的话 代码注释也有点解释

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
#define oo 0x13131313
#define pi 3.1415926
#define exp 10e-6
using namespace std;
int N,L;
struct point{
double x,y;
};
point A[1050];
point stk[1050];
int s=0;
int k;
int start;
double ans; double dist(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double crossdet(double x1,double y1,double x2,double y2)
{
return x1*y2-x2*y1;
}
double cross(point a,point b,point c)
{
return crossdet(b.x-a.x,b.y-a.y,c.x-a.x,c.y-a.y);
}
double dotdet(double x1,double y1,double x2,double y2)
{
return x1*x2+y1*y2;
}
double dot(point a,point b,point c)
{
return dotdet(b.x-a.x,b.y-a.y,c.x-a.x,c.y-a.y);
}
int sgn(double x)
{
if(fabs(x)<exp) return 0;
if(x<0) return -1;
else return 1;
}int cmp(point a,point b) // 当叉积为0时通过点积比较的cmp
{
double temp=cross(A[1],a,b);
double temp1;
if(sgn(temp)==0)
{
temp1=dot(a,A[1],b);
return sgn(temp1)<0; // 点靠起点近的排前面
}
else return sgn(temp)>0;
}
/*
int cmp(point a,point b) //当叉积为0时通过距离比较的cmp
{
double temp=cross(A[1],a,b);
double temp1;
if(sgn(temp)==0)
{
return dist(a,A[1])<dist(b,A[1]);
}
else return sgn(temp)>0;
}
/*
int cmp(const void *i,const void *j) //qsort的cmp
{
point *a=(point *)i,*b=(point *)j;
double re=cross(A[1],*a,*b);
if(re==0)
return dist(*a,A[1])>dist(*b,A[1]);
return re<0;
}
*/
void input()
{
memset(stk,0,sizeof(stk));
memset(A,0,sizeof(A));
s=0;ans=0;
cin>>N>>L;
for(int i=1;i<=N;i++)
{
scanf("%lf%lf",&A[i].x,&A[i].y);
}
}
void findmin(int &k) //寻找最小的y,同时最小的话选x小的
{
k=1;
for(int i=2;i<=N;i++)
{
if(sgn(A[i].y-A[k].y)<0)
k=i;
else if(sgn(A[i].y-A[k].y)==0&&(A[i].x-A[k].x)<0)
k=i;
}
}
void solve()
{
findmin(start);
swap(A[1],A[start]);//小细节注意
// qsort(A+2,N-1,sizeof(A[1]),cmp);
sort(A+2,A+N+1,cmp);
for(int i=1;i<=2;i++)
{
stk[++s]=A[i]; //一开始二个肯定在的点入栈
}
for(int i=3;i<=N;i++)
{
while(sgn(cross(stk[s-1],stk[s],A[i]))<=0&&s>=2) //1.防止下面的2个点退栈 2.若stk[i-1]A[i]不在stk[i-1]A[s]的逆时针方向 退栈 寻找更好的凸包
s--;
stk[++s]=A[i]; //入栈 最终栈里面至少有3个点 也显然可知若即使只有3个点 则3个点都在凸包上
}
for(int i=2;i<=s;i++)
{
ans+=dist(stk[i],stk[i-1]);
}
ans+=dist(stk[1],stk[s]);
}
void init()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
}
int main()
{
int T;
//init();
cin>>T;
int ttt=0;
while(T--)
{
if(ttt++) printf("\n");
input();
solve();
if(N==1) ans=0;
else if(N==2) ans=dist(A[1],A[2]);
ans=ans+2*pi*L; //由题目显然克制 凸包周长加那个圆的面积
printf("%.0lf\n",ans);
}
}

【计算几何初步-凸包-Graham扫描法-极角序】【HDU1348】 WALL的更多相关文章

  1. [hdu contest 2019-07-29] Azshara's deep sea 计算几何 动态规划 区间dp 凸包 graham扫描法

    今天hdu的比赛的第一题,凸包+区间dp. 给出n个点m个圆,n<400,m<100,要求找出凸包然后给凸包上的点连线,连线的两个点不能(在凸包上)相邻,连线不能与圆相交或相切,连线不能相 ...

  2. poj 1696:Space Ant(计算几何,凸包变种,极角排序)

    Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2876   Accepted: 1839 Descrip ...

  3. 凸包--Graham扫描法

    一直听大佬们说:凸包.凸包.凸包 一直不会..... 然后.... 今天考试,考了一道计算几何的简单题.... 这,,,还是学一下吧.. 然后考试现场学习一下凸包算法. 先理解一下凸包是啥东西. 看看 ...

  4. 【计算几何初步-凸包-Jarvis步进法。】【HDU1392】Surround the Trees

    [科普]什么是BestCoder?如何参加? Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  5. 凸包算法(Graham扫描法)详解

    先说下基础知识,不然不好理解后面的东西 两向量的X乘p1(x1,y1),p2(x2,y2) p1Xp2如果小于零则说明  p1在p2的逆时针方向 如果大于零则说明 p1在p2的顺时针方向 struct ...

  6. hrbustoj 1318:蛋疼的蚂蚁(计算几何,凸包变种,叉积应用)

    蛋疼的蚂蚁 Time Limit: 1000 MS     Memory Limit: 65536 K Total Submit: 39(22 users)    Total Accepted: 26 ...

  7. 计算几何 : 凸包学习笔记 --- Graham 扫描法

    凸包 (只针对二维平面内的凸包) 一.定义 简单的说,在一个二维平面内有n个点的集合S,现在要你选择一个点集C,C中的点构成一个凸多边形G,使得S集合的所有点要么在G内,要么在G上,并且保证这个凸多边 ...

  8. 凸包模板——Graham扫描法

    凸包模板--Graham扫描法 First 标签: 数学方法--计算几何 题目:洛谷P2742[模板]二维凸包/[USACO5.1]圈奶牛Fencing the Cows yyb的讲解:https:/ ...

  9. Graham 扫描法找凸包(convexHull)

    凸包定义 通俗的话来解释凸包:给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有的点  Graham扫描法 由最底的一点 \(p_1\) 开始(如果有多个这样的点, ...

随机推荐

  1. 【js】判断设备类型,访问相应的网站

    引入 function uaredirect(f) { try { if (document.getElementById("bdmark") != null) { return ...

  2. border-radius实例1

    简单参数设置一 1.html <div class="paddingBig"> <div class="divSmall radiusOne" ...

  3. Python3.5入门学习记录-列表、元组、字典

    1.列表 python列表的定义使用[] list = [1,2,3,4,5] #创建一个心列表list 获取列表中的值 first = list[0] #list中第一个值 last = list[ ...

  4. I/O多路复用之epoll

    1.select.poll的些许缺点 先回忆下select和poll的接口 int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set ...

  5. UVALive 4119 Always an integer (差分数列,模拟)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Always an integer Time Limit:3000MS     M ...

  6. No1_2. 流程控制_java学习笔记

    import java.util.Scanner; import java.lang.Math; public class HelloForWhile { /** * 文档注释,程序名称:HelloF ...

  7. php 查看文档

    http://www.runoob.com/php/php-datatypes.html php 学习网站 : http://www.phpfans.net/

  8. 安装好ubuntu之后要干的几件事

    安装完ubuntu之后啊,系统除了自带了firefox,libre office等能用,要应付日常需求还差了些.然后我根据最近我的需求写了个清单.完成这个清单就让ubuntu成了一个得心应手的好工具了 ...

  9. 异常处理与调试3 - 零基础入门学习Delphi52

    异常处理与调试3 让编程改变世界 Change the world by program 两种结构的嵌套 要在一个过程里同时实现处理异常和保护资源分配,关键要保证"try-except&qu ...

  10. printf输出函数

    printf函数称为格式输出函数 格式: printf(const char *_Format,...) printf(“格式控制字符串”, 输出表列)其中格式控制字符串用于指定输出格式.格式控制串可 ...