Easy Number Challenge

Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Appoint description: 
System Crawler  (2016-04-26)

Description

Let's denote d(n) as the number of divisors of a positive integer n. You are given three integers ab and c. Your task is to calculate the following sum:

Find the sum modulo 1073741824(230).

Input

The first line contains three space-separated integers ab and c (1 ≤ a, b, c ≤ 100).

Output

Print a single integer — the required sum modulo 1073741824(230).

Sample Input

Input
2 2 2
Output
20
Input
5 6 7
Output
1520

Hint

For the first example.

  • d(1·1·1) = d(1) = 1;
  • d(1·1·2) = d(2) = 2;
  • d(1·2·1) = d(2) = 2;
  • d(1·2·2) = d(4) = 3;
  • d(2·1·1) = d(2) = 2;
  • d(2·1·2) = d(4) = 3;
  • d(2·2·1) = d(4) = 3;
  • d(2·2·2) = d(8) = 4.

So the result is 1 + 2 + 2 + 3 + 2 + 3 + 3 + 4 = 20.

题解:

d(x)代表x的因子的个数;还好i,j,k都不大,100,暴力就行,直接由于因子个数等于质因子的系数加一之积,反素数讲过,由此可得;

代码:

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<iostream>
#include<set>
#define ll long long
#define MOD 1073741824
using namespace std;
int num[];
int main()
{
int a,b,c;
int i,j,k;
while(scanf("%d%d%d",&a,&b,&c)!=EOF)
{
memset(num, , sizeof(num));
ll sum=, temp;
set<int>st;
set<int>::iterator iter;
for(i=;i<=a;i++)
{
for(j=;j<=b;j++)
{
for(k=;k<=c;k++)
{
temp = i * j * k;
ll cnt = ;
for(int p = ; p <= temp; p++){
if(temp % p == ){
int cur = ;
while(temp % p == ){
temp /= p;
cur++;
}
cnt *= cur + ;
}
}
sum += cnt;
sum %= MOD;
}
}
} printf("%lld\n",sum);
}
return ;
}

Easy Number Challenge(暴力,求因子个数)的更多相关文章

  1. 『NYIST』第八届河南省ACM竞赛训练赛[正式赛一]CF-236B. Easy Number Challenge

    B. Easy Number Challenge time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  2. Trailing Zeroes (I) LightOJ - 1028(求因子个数)

    题意: 给出一个N 求N有多少个别的进制的数有后导零 解析: 对于一个别的进制的数要转化为10进制 (我们暂且只分析二进制就好啦) An * 2^(n-1) + An-1 * 2^(n-2) + `` ...

  3. Almost All Divisors(求因子个数及思维)

    ---恢复内容开始--- We guessed some integer number xx. You are given a list of almost all its divisors. Alm ...

  4. LightOj1028 - Trailing Zeroes (I)---求因子个数

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1028 题意:给你一个数 n (1<=n<=10^12), 然后我们可以把它 ...

  5. POJ 2992 Divisors (求因子个数)

    题意:给n和k,求组合C(n,k)的因子个数. 这道题,若一开始先预处理出C[i][j]的大小,再按普通方法枚举2~sqrt(C[i][j])来求解对应的因子个数,会TLE.所以得用别的方法. 在说方 ...

  6. Number of Parallelograms(求平行四边形个数)

    Number of Parallelograms time limit per test 4 seconds memory limit per test 256 megabytes input sta ...

  7. HDU-1492-The number of divisors(约数) about Humble Numbers -求因子总数+唯一分解定理的变形

    A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...

  8. BZOJ3994:约数个数和(莫比乌斯反演:求[1,N]*[1,M]的矩阵的因子个数)

    Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Outpu ...

  9. Divisors (求解组合数因子个数)【唯一分解定理】

    Divisors 题目链接(点击) Your task in this problem is to determine the number of divisors of Cnk. Just for ...

随机推荐

  1. C# yield return 流程理解

    代码如下:  在Documents1方法中使用yield return之后, 下次在进入Documents1方法就是从上一次yield return部分执行 using System; using S ...

  2. 图的遍历(DFS、BFS)

    理论: 深度优先搜索(Depth_Fisrst Search)遍历类似于树的先根遍历,是树的先根遍历的推广: 广度优先搜索(Breadth_First Search) 遍历类似于树的按层次遍历的过程: ...

  3. PC--CSS命名

    头:header内 容:container尾:footer导航:nav侧栏:sidebar栏目:column页 面外围控制整体布局宽度:wrapper左右中:left right center登录条: ...

  4. 关于C#基类和子类函数调用问题

    c#基类子类的函数调用关系,代码说明newkeyword后面的类中的函数为对象调用的函数,当然必需要有virtual和override,继承就相当于包括了基类的函数,子类对象调用时基类的函数相当于就在 ...

  5. linux 系统下java开发环境的配置

    在安装之前,确保你的linux系统下有 jdk,jboss等相关软件 一.配置JDK环境变量 步骤: 解压缩JDK文件: unzip jdk1.6.0_31.zip 目录下显示文件夹jdk1.6.0_ ...

  6. OpenCV——Rect矩阵类

    成员变量x.y.width.height,分别为左上角点的坐标和矩形的宽和高. 常用的成员函数有: Size()返回值为一个Size area()返回矩形的面积 contains(Point)用来判断 ...

  7. PHP APC缓存配置、使用详解

    一.APC缓存简介 APC,全称是Alternative PHP Cache,官方翻译叫”可选PHP缓存”.它为我们提供了缓存和优化PHP的中间代码的框架. APC的缓存分两部分:系统缓存和用户数据缓 ...

  8. python-整理--sqlite数据库访问

    python 自带sqlite3数据库访问模块. sqlite3 以下写一个数据库访问类 ''' 2016年2月5日 描述: 操作sqlite数据库的封装 主要功能: 将sqlite数据库数据转为py ...

  9. PROCEDURE_监测系统_数据备份存储过程—备份原始数据,每十分钟一条,取平均值

    create or replace procedure proc_backup_originaldata(retCode out varchar2, -- 返回码                    ...

  10. gerrit升级到16.04之后连接不到服务器

    升级到ubuntu-16.04后,发现Git-review代码报错: Unable to negotiate with 10.140.110.77 port 29418: no matching ke ...