Easy Number Challenge(暴力,求因子个数)
Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u
System Crawler (2016-04-26)
Description
Let's denote d(n) as the number of divisors of a positive integer n. You are given three integers a, b and c. Your task is to calculate the following sum:
Find the sum modulo 1073741824(230).
Input
The first line contains three space-separated integers a, b and c (1 ≤ a, b, c ≤ 100).
Output
Print a single integer — the required sum modulo 1073741824(230).
Sample Input
2 2 2
20
5 6 7
1520
Hint
For the first example.
- d(1·1·1) = d(1) = 1;
- d(1·1·2) = d(2) = 2;
- d(1·2·1) = d(2) = 2;
- d(1·2·2) = d(4) = 3;
- d(2·1·1) = d(2) = 2;
- d(2·1·2) = d(4) = 3;
- d(2·2·1) = d(4) = 3;
- d(2·2·2) = d(8) = 4.
So the result is 1 + 2 + 2 + 3 + 2 + 3 + 3 + 4 = 20.
题解:
d(x)代表x的因子的个数;还好i,j,k都不大,100,暴力就行,直接由于因子个数等于质因子的系数加一之积,反素数讲过,由此可得;
代码:
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<iostream>
#include<set>
#define ll long long
#define MOD 1073741824
using namespace std;
int num[];
int main()
{
int a,b,c;
int i,j,k;
while(scanf("%d%d%d",&a,&b,&c)!=EOF)
{
memset(num, , sizeof(num));
ll sum=, temp;
set<int>st;
set<int>::iterator iter;
for(i=;i<=a;i++)
{
for(j=;j<=b;j++)
{
for(k=;k<=c;k++)
{
temp = i * j * k;
ll cnt = ;
for(int p = ; p <= temp; p++){
if(temp % p == ){
int cur = ;
while(temp % p == ){
temp /= p;
cur++;
}
cnt *= cur + ;
}
}
sum += cnt;
sum %= MOD;
}
}
} printf("%lld\n",sum);
}
return ;
}
Easy Number Challenge(暴力,求因子个数)的更多相关文章
- 『NYIST』第八届河南省ACM竞赛训练赛[正式赛一]CF-236B. Easy Number Challenge
B. Easy Number Challenge time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
- Trailing Zeroes (I) LightOJ - 1028(求因子个数)
题意: 给出一个N 求N有多少个别的进制的数有后导零 解析: 对于一个别的进制的数要转化为10进制 (我们暂且只分析二进制就好啦) An * 2^(n-1) + An-1 * 2^(n-2) + `` ...
- Almost All Divisors(求因子个数及思维)
---恢复内容开始--- We guessed some integer number xx. You are given a list of almost all its divisors. Alm ...
- LightOj1028 - Trailing Zeroes (I)---求因子个数
题目链接:http://lightoj.com/volume_showproblem.php?problem=1028 题意:给你一个数 n (1<=n<=10^12), 然后我们可以把它 ...
- POJ 2992 Divisors (求因子个数)
题意:给n和k,求组合C(n,k)的因子个数. 这道题,若一开始先预处理出C[i][j]的大小,再按普通方法枚举2~sqrt(C[i][j])来求解对应的因子个数,会TLE.所以得用别的方法. 在说方 ...
- Number of Parallelograms(求平行四边形个数)
Number of Parallelograms time limit per test 4 seconds memory limit per test 256 megabytes input sta ...
- HDU-1492-The number of divisors(约数) about Humble Numbers -求因子总数+唯一分解定理的变形
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...
- BZOJ3994:约数个数和(莫比乌斯反演:求[1,N]*[1,M]的矩阵的因子个数)
Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Outpu ...
- Divisors (求解组合数因子个数)【唯一分解定理】
Divisors 题目链接(点击) Your task in this problem is to determine the number of divisors of Cnk. Just for ...
随机推荐
- C# yield return 流程理解
代码如下: 在Documents1方法中使用yield return之后, 下次在进入Documents1方法就是从上一次yield return部分执行 using System; using S ...
- 图的遍历(DFS、BFS)
理论: 深度优先搜索(Depth_Fisrst Search)遍历类似于树的先根遍历,是树的先根遍历的推广: 广度优先搜索(Breadth_First Search) 遍历类似于树的按层次遍历的过程: ...
- PC--CSS命名
头:header内 容:container尾:footer导航:nav侧栏:sidebar栏目:column页 面外围控制整体布局宽度:wrapper左右中:left right center登录条: ...
- 关于C#基类和子类函数调用问题
c#基类子类的函数调用关系,代码说明newkeyword后面的类中的函数为对象调用的函数,当然必需要有virtual和override,继承就相当于包括了基类的函数,子类对象调用时基类的函数相当于就在 ...
- linux 系统下java开发环境的配置
在安装之前,确保你的linux系统下有 jdk,jboss等相关软件 一.配置JDK环境变量 步骤: 解压缩JDK文件: unzip jdk1.6.0_31.zip 目录下显示文件夹jdk1.6.0_ ...
- OpenCV——Rect矩阵类
成员变量x.y.width.height,分别为左上角点的坐标和矩形的宽和高. 常用的成员函数有: Size()返回值为一个Size area()返回矩形的面积 contains(Point)用来判断 ...
- PHP APC缓存配置、使用详解
一.APC缓存简介 APC,全称是Alternative PHP Cache,官方翻译叫”可选PHP缓存”.它为我们提供了缓存和优化PHP的中间代码的框架. APC的缓存分两部分:系统缓存和用户数据缓 ...
- python-整理--sqlite数据库访问
python 自带sqlite3数据库访问模块. sqlite3 以下写一个数据库访问类 ''' 2016年2月5日 描述: 操作sqlite数据库的封装 主要功能: 将sqlite数据库数据转为py ...
- PROCEDURE_监测系统_数据备份存储过程—备份原始数据,每十分钟一条,取平均值
create or replace procedure proc_backup_originaldata(retCode out varchar2, -- 返回码 ...
- gerrit升级到16.04之后连接不到服务器
升级到ubuntu-16.04后,发现Git-review代码报错: Unable to negotiate with 10.140.110.77 port 29418: no matching ke ...