Easy Number Challenge

Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Appoint description: 
System Crawler  (2016-04-26)

Description

Let's denote d(n) as the number of divisors of a positive integer n. You are given three integers ab and c. Your task is to calculate the following sum:

Find the sum modulo 1073741824(230).

Input

The first line contains three space-separated integers ab and c (1 ≤ a, b, c ≤ 100).

Output

Print a single integer — the required sum modulo 1073741824(230).

Sample Input

Input
2 2 2
Output
20
Input
5 6 7
Output
1520

Hint

For the first example.

  • d(1·1·1) = d(1) = 1;
  • d(1·1·2) = d(2) = 2;
  • d(1·2·1) = d(2) = 2;
  • d(1·2·2) = d(4) = 3;
  • d(2·1·1) = d(2) = 2;
  • d(2·1·2) = d(4) = 3;
  • d(2·2·1) = d(4) = 3;
  • d(2·2·2) = d(8) = 4.

So the result is 1 + 2 + 2 + 3 + 2 + 3 + 3 + 4 = 20.

题解:

d(x)代表x的因子的个数;还好i,j,k都不大,100,暴力就行,直接由于因子个数等于质因子的系数加一之积,反素数讲过,由此可得;

代码:

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<iostream>
#include<set>
#define ll long long
#define MOD 1073741824
using namespace std;
int num[];
int main()
{
int a,b,c;
int i,j,k;
while(scanf("%d%d%d",&a,&b,&c)!=EOF)
{
memset(num, , sizeof(num));
ll sum=, temp;
set<int>st;
set<int>::iterator iter;
for(i=;i<=a;i++)
{
for(j=;j<=b;j++)
{
for(k=;k<=c;k++)
{
temp = i * j * k;
ll cnt = ;
for(int p = ; p <= temp; p++){
if(temp % p == ){
int cur = ;
while(temp % p == ){
temp /= p;
cur++;
}
cnt *= cur + ;
}
}
sum += cnt;
sum %= MOD;
}
}
} printf("%lld\n",sum);
}
return ;
}

Easy Number Challenge(暴力,求因子个数)的更多相关文章

  1. 『NYIST』第八届河南省ACM竞赛训练赛[正式赛一]CF-236B. Easy Number Challenge

    B. Easy Number Challenge time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  2. Trailing Zeroes (I) LightOJ - 1028(求因子个数)

    题意: 给出一个N 求N有多少个别的进制的数有后导零 解析: 对于一个别的进制的数要转化为10进制 (我们暂且只分析二进制就好啦) An * 2^(n-1) + An-1 * 2^(n-2) + `` ...

  3. Almost All Divisors(求因子个数及思维)

    ---恢复内容开始--- We guessed some integer number xx. You are given a list of almost all its divisors. Alm ...

  4. LightOj1028 - Trailing Zeroes (I)---求因子个数

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1028 题意:给你一个数 n (1<=n<=10^12), 然后我们可以把它 ...

  5. POJ 2992 Divisors (求因子个数)

    题意:给n和k,求组合C(n,k)的因子个数. 这道题,若一开始先预处理出C[i][j]的大小,再按普通方法枚举2~sqrt(C[i][j])来求解对应的因子个数,会TLE.所以得用别的方法. 在说方 ...

  6. Number of Parallelograms(求平行四边形个数)

    Number of Parallelograms time limit per test 4 seconds memory limit per test 256 megabytes input sta ...

  7. HDU-1492-The number of divisors(约数) about Humble Numbers -求因子总数+唯一分解定理的变形

    A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...

  8. BZOJ3994:约数个数和(莫比乌斯反演:求[1,N]*[1,M]的矩阵的因子个数)

    Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Outpu ...

  9. Divisors (求解组合数因子个数)【唯一分解定理】

    Divisors 题目链接(点击) Your task in this problem is to determine the number of divisors of Cnk. Just for ...

随机推荐

  1. Chosen 基本使用

    点击下载Chosen 引入文件 chosen.css jquery-1.7.1.min.js chosen.jquery.js 绑定数据: for (var i = 0; i < data.le ...

  2. OS快速开发必备

    github:https://github.com/koknine (终于改成以前的了) 当前移动互联网行业太火爆,移动端的需求日益增长,很多开发人员每天都应对着各种需求,作为一名iOS开发人员,对于 ...

  3. python之路-pip安装

    pip类似RedHat里面的yum,安装Python包非常方便   安装pip方法: 1.安装环境:ubuntu-14.04.2 sudo apt-get install python-pip pyt ...

  4. SPRING源码分析:IOC容器

    在Spring中,最基本的IOC容器接口是BeanFactory - 这个接口为具体的IOC容器的实现作了最基本的功能规定 - 不管怎么着,作为IOC容器,这些接口你必须要满足应用程序的最基本要求: ...

  5. Linux 挂载命令 --mount

    1.挂载光盘命令  mount :  mount [-t vfstype] [-o options] device dir mount [-t 文件系统] [-o 特殊选项] 设备文件名 挂载点 -t ...

  6. 20. Screen

    一. Screen 1.什么是Screen     Screen 是在多个进程间多路复用一个物理终端的全屏窗口管理器,Screen 也叫会话,一个Screen 会话中可以有多个 Screen 窗口, ...

  7. 一般处理程序、ASP.NET核心知识(5)--转载

    初窥 1.新建一个一般处理程序 新建一个一般处理程序 2.看看里头的代码 public class MyHandler : IHttpHandler { public void ProcessRequ ...

  8. WCF入门教程系列一

    一.概述 Windows Communication Foundation(WCF)是由微软发展的一组数据通信的应用程序开发接口,可以翻译为Windows通讯接口,它是.NET框架的一部分.由 .NE ...

  9. 【.Net Remoting-1】

    [.NetRemoting]2015.09.16 [分布式应用程序] 应用程序分布在不同计算机上,通过网络来共同完成一项任务 C/S架构[模式] [互操作性,Interoperability]又称[互 ...

  10. poj2243 bfs

    O - 上一个题的加强版 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:65536KB     6 ...