http://codeforces.com/contest/486/problem/D

题意:给定一棵树,点上有权值,以及d,要求有多少种联通块满足最大值减最小值小于等于d。

思路:枚举i作为最大的点权,然后dfs树规一下,就能得出以这个点为最大值的方案数,因为有权值相等的点,所以我们规定一下,只能从标号小的拓展到标号大的,就不会重复了。

 #include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#define ll long long
const ll Mod=;
int tot,go[],first[],next[],a[],d,n;
ll f[];
int read(){
int t=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
void insert(int x,int y){
tot++;
go[tot]=y;
next[tot]=first[x];
first[x]=tot;
}
void add(int x,int y){
insert(x,y);insert(y,x);
}
void dfs(int x,int fa,int fi){
f[x]=;
for (int i=first[x];i;i=next[i]){
int pur=go[i];
if (pur==fa) continue;
if (a[pur]>a[fi]) continue;
if (a[fi]-d>a[pur]) continue;
if (a[fi]==a[pur]&&fi>pur) continue;
dfs(pur,x,fi);
f[x]*=(1LL+f[pur]);
f[x]%=Mod;
}
}
int main(){
d=read();n=read();
for (int i=;i<=n;i++)
a[i]=read();
for (int i=;i<n;i++){
int x=read(),y=read();
add(x,y);
}
ll ans=;
for (int i=;i<=n;i++){
for (int j=;j<=n;j++) f[j]=;
dfs(i,,i);
ans=(ans+f[i])%Mod;
}
printf("%I64d\n",ans);
}

Codeforces 486D D. Valid Sets的更多相关文章

  1. codeforces 486 D. Valid Sets(树形dp)

    题目链接:http://codeforces.com/contest/486/problem/D 题意:给出n个点,还有n-1条边的信息,问这些点共能构成几棵满足要求的树,构成树的条件是. 1)首先这 ...

  2. Codeforces 486D Valid Sets (树型DP)

    题目链接 Valid Sets 题目要求我们在一棵树上计符合条件的连通块的个数. 满足该连通块内,点的权值极差小于等于d 树的点数满足 n <= 2000 首先我们先不管这个限制条件,也就是先考 ...

  3. Codeforces 486D. Valid Sets

    D. Valid Sets time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  4. Codeforces Round #277 (Div. 2) D. Valid Sets 暴力

    D. Valid Sets Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/486/problem ...

  5. Codeforces Round #277 (Div. 2) D. Valid Sets (DP DFS 思维)

    D. Valid Sets time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  6. Codeforces Round #277 (Div. 2) D. Valid Sets DP

    D. Valid Sets   As you know, an undirected connected graph with n nodes and n - 1 edges is called a  ...

  7. Codeforces 486D Valid Sets:Tree dp【n遍O(n)的dp】

    题目链接:http://codeforces.com/problemset/problem/486/D 题意: 给你一棵树,n个节点,每个节点的点权为a[i]. 问你有多少个连通子图,使得子图中的ma ...

  8. codeforces B. Eight Point Sets 解题报告

    题目链接:http://codeforces.com/problemset/problem/334/B 一开始看到题目,有点怯,理解了题目后,其实并不难.这句话是突破口 three distinct ...

  9. Codeforces 425E Sereja and Sets dp

    Sereja and Sets 我们先考虑对于一堆线段我们怎么求最大的不相交的线段数量. 我们先按 r 排序, 然后能选就选. 所以我们能想到我们用$dp[ i ][ j ]$表示已经选了 i 个线段 ...

随机推荐

  1. windows批处理命令教程

      批处理文件是无格式的文本文件,它包含一条或多条命令.它的文件扩展名为 .bat 或 .cmd.在命令提示下键入批处理文件的名称,或者双击该批处理文件,系统就会调用Cmd.exe按照该文件中各个命令 ...

  2. KEIL 伪指令

    //为了大家查找方便,命令按字母排序:0.ALTNAME 功能: 这一伪指令用来自定义名字,以替换源程序中原来的保留字,替换的保留字均可等效地用于子程序中. 格式: ALTNAME 保留字 自定义名 ...

  3. ActionBarActivity & FragmentActivity

    1 ActionBarActivity 是FragmentActivity的一个子类 2 ActionBarActivity 加入了对actionBar的操作, 比如getSupportActionB ...

  4. svn由于连接方在一段时间后没有正确答复或连接的主机没有反应连接尝试失败

    解决方法,关掉防火墙, service iptables status 查看iptables状态 service iptables restart iptables服务重启 service iptab ...

  5. NSDate显示和时区的关系

    在网上看到一篇介绍NSDate的博文.在它的“NSDate初始化“章节,说在使用  NSLog(@"当前时间 date = %@",[NSDate date]);时,显示出来的时间 ...

  6. c语言通过时间种子产生随机数并选出最大值以及下标

    1 #include <stdio.h> #include <stdlib.h> #include <time.h> //2016 10 10 void main( ...

  7. C# Excel导入、导出

    本篇主要介绍C#的Excel导入.导出. 目录 1. 介绍:描述第三方类库NPOI以及Excel结构 2. Excel导入:介绍C#如何调用NPOI进行Excel导入,包含:流程图.NOPI以及C#代 ...

  8. dom4j解析接口使用SOAP传递的xml

    xml 文件的格式类型: <?xml version="1.0" encoding="utf-8"?> <SOAP-ENV:Envelope ...

  9. 斐波那契数列 Php练手

    数列从第三项开始,每一项都等于前两项之和. F0=0,F1=1,Fn=F(n-1)+F(n-2) 递归版和非递归版. <?php function fib($n){ $array = array ...

  10. laravel3中文文档是迈入laravel4的捷径

    http://v3.golaravel.com/docs/ 目录 Laravel概览 更新日志 安装与设置 系统需求 安装 服务器设置 基本设置 环境 友好的链接(URL) 路由 基础 通配符(Wil ...