Hadoop学习日志- install hadoop
资料来源 : http://www.tutorialspoint.com/hadoop/hadoop_enviornment_setup.htm
Hadoop 安装
- 创建新用户
$ su
password:
# useradd hadoop -g root
# passwd hadoop
New passwd:
Retype new passwd
修改/etc/sudoers 赋予sudo 权限
- 设置ssh
SSH Setup and Key Generation
SSH setup is required to do different operations on a cluster such as starting, stopping, distributed daemon shell operations. To authenticate different users of Hadoop, it is required to provide public/private key pair for a Hadoop user and share it with different users.
The following commands are used for generating a key value pair using SSH. Copy the public keys form id_rsa.pub to authorized_keys, and provide the owner with read and write permissions to authorized_keys file respectively.
$ ssh-keygen -t rsa
$ cat ~/.ssh/id_rsa.pub >>
~/.ssh/authorized_keys
$ chmod 0600
~/.ssh/authorized_keys
- Install java
Java is the main prerequisite for Hadoop. First of all, you should verify the existence of java in your system using the command "java -version". The syntax of java version command is given below.
$ java -version
If everything is in order, it will give you the following output.
java version "1.7.0_71"
Java(TM) SE Runtime
Environment
(build 1.7.0_71-b13)
Java
HotSpot(TM)
Client VM (build 25.0-b02, mixed mode)
If java is not installed in your system, then follow the steps given below for installing java.
Step 1
Download java (JDK <latest version> - X64.tar.gz) by visiting the following linkhttp://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads1880260.html.
Then jdk-7u71-linux-x64.tar.gz will be downloaded into your system.
Step 2
Generally you will find the downloaded java file in Downloads folder. Verify it and extract the jdk-7u71-linux-x64.gz file using the following commands.
$ cd Downloads/
$ ls
jdk-7u71-linux-x64.gz
$ tar zxf jdk-7u71-linux-x64.gz
$ ls
jdk1.7.0_71 jdk-7u71-linux-x64.gz
Step 3
To make java available to all the users, you have to move it to the location "/usr/local/". Open root, and type the following commands.
$ su
password:
# mv jdk1.7.0_71 /usr/local/
# exit
Step 4
For setting up PATH and JAVA_HOME variables, add the following commands to ~/.bashrc file.
export JAVA_HOME=/usr/local/jdk1.7.0_71
export PATH=$PATH:$JAVA_HOME/bin
Now apply all the changes into the current running system.
$ source ~/.bashrc
Step 5
Use the following commands to configure java alternatives:
# alternatives --install /usr/bin/java java usr/local/java/bin/java 2
# alternatives --install /usr/bin/javac javac usr/local/java/bin/javac 2
# alternatives --install /usr/bin/jar jar usr/local/java/bin/jar 2
# alternatives --set java usr/local/java/bin/java
# alternatives --set javac usr/local/java/bin/javac
# alternatives --set jar usr/local/java/bin/jar
Now verify the java -version command from the terminal as explained above.
- Downloading Hadoop
Download and extract Hadoop 2.4.1 from Apache software foundation using the following commands.
$ su
password:
# cd /usr/local
# wget http://apache.claz.org/hadoop/common/hadoop-2.4.1/
hadoop-2.4.1.tar.gz
# tar xzf hadoop-2.4.1.tar.gz
# mv hadoop-2.4.1/* to hadoop/
# exit
- Installing Hadoop in Standalone Mode
Here we will discuss the installation of Hadoop 2.4.1 in standalone mode.
There are no daemons running and everything runs in a single JVM. Standalone mode is suitable for running MapReduce programs during development, since it is easy to test and debug them.
Setting Up Hadoop
You can set Hadoop environment variables by appending the following commands to ~/.bashrc file.
export HADOOP_HOME=/usr/local/hadoop
Before proceeding further, you need to make sure that Hadoop is working fine. Just issue the following command:
$ hadoop version
If everything is fine with your setup, then you should see the following result:
Hadoop
2.4.1
Subversion https://svn.apache.org/repos/asf/hadoop/common -r 1529768
Compiled
by hortonmu on 2013-10-07T06:28Z
Compiled
with protoc 2.5.0
From source with checksum 79e53ce7994d1628b240f09af91e1af4
It means your Hadoop's standalone mode setup is working fine. By default, Hadoop is configured to run in a non-distributed mode on a single machine.
Example
Let's check a simple example of Hadoop. Hadoop installation delivers the following example MapReduce jar file, which provides basic functionality of MapReduce and can be used for calculating, like Pi value, word counts in a given list of files, etc.
$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar
Let's have an input directory where we will push a few files and our requirement is to count the total number of words in those files. To calculate the total number of words, we do not need to write our MapReduce, provided the .jar file contains the implementation for word count. You can try other examples using the same .jar file; just issue the following commands to check supported MapReduce functional programs by hadoop-mapreduce-examples-2.2.0.jar file.
$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduceexamples-2.2.0.jar
Step 1
Create temporary content files in the input directory. You can create this input directory anywhere you would like to work.
$ mkdir input
$ cp $HADOOP_HOME/*.txt input
$ ls -l input
It will give the following files in your input directory:
total 24
-rw-r--r--
1 root root 15164
Feb
21
10:14 LICENSE.txt
-rw-r--r--
1 root root 101
Feb
21
10:14 NOTICE.txt
-rw-r--r--
1 root root 1366
Feb
21
10:14 README.txt
These files have been copied from the Hadoop installation home directory. For your experiment, you can have different and large sets of files.
Step 2
Let's start the Hadoop process to count the total number of words in all the files available in the input directory, as follows:
$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduceexamples-2.2.0.jar wordcount input ouput
Step 3
Step-2 will do the required processing and save the output in output/part-r00000 file, which you can check by using:
$cat output/*
It will list down all the words along with their total counts available in all the files available in the input directory.
"AS 4
"Contribution" 1
"Contributor" 1
"Derivative
1
"Legal 1
"License" 1
"License"); 1
"Licensor" 1
"NOTICE"
1
"Not 1
"Object" 1
"Source"
1
"Work" 1
"You" 1
"Your") 1
"[]" 1
"control" 1
"printed 1
"submitted"
1
(50%)
1
(BIS),
1
(C)
1
(Don't) 1
(ECCN) 1
(INCLUDING 2
(INCLUDING, 2
.............
- Installing Hadoop in Pseudo Distributed Mode
Follow the steps given below to install Hadoop 2.4.1 in pseudo distributed mode.
Step 1: Setting Up Hadoop
You can set Hadoop environment variables by appending the following commands to ~/.bashrc file.
export HADOOP_HOME=/usr/local/hadoop
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin
export HADOOP_INSTALL=$HADOOP_HOME
Now apply all the changes into the current running system.
$ source ~/.bashrc
Step 2: Hadoop Configuration
You can find all the Hadoop configuration files in the location "$HADOOP_HOME/etc/hadoop". It is required to make changes in those configuration files according to your Hadoop infrastructure.
$ cd $HADOOP_HOME/etc/hadoop
In order to develop Hadoop programs in java, you have to reset the java environment variables in hadoop-env.sh file by replacing JAVA_HOME value with the location of java in your system.
export JAVA_HOME=/usr/local/jdk1.7.0_71
The following are the list of files that you have to edit to configure Hadoop.
core-site.xml
The core-site.xml file contains information such as the port number used for Hadoop instance, memory allocated for the file system, memory limit for storing the data, and size of Read/Write buffers.
Open the core-site.xml and add the following properties in between <configuration>, </configuration> tags.
<configuration>
<property>
<name>fs.default.name </name>
<value> hdfs://localhost:9000 </value>
</property>
</configuration>
hdfs-site.xml
The hdfs-site.xml file contains information such as the value of replication data, namenode path, and datanode paths of your local file systems. It means the place where you want to store the Hadoop infrastructure.
Let us assume the following data.
dfs.replication (data replication value)
=
1
(In the below given path /hadoop/
is the user name.
hadoopinfra/hdfs/namenode is the directory created by hdfs file system.)
namenode path =
//home/hadoop/hadoopinfra/hdfs/namenode
(hadoopinfra/hdfs/datanode is the directory created by hdfs file system.)
datanode path =
//home/hadoop/hadoopinfra/hdfs/datanode
Open this file and add the following properties in between the <configuration> </configuration> tags in this file.
<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>dfs.name.dir</name>
<value>file:///home/hadoop/hadoopinfra/hdfs/namenode </value>
</property>
<property>
<name>dfs.data.dir</name>
<value>file:///home/hadoop/hadoopinfra/hdfs/datanode </value>
</property>
</configuration>
Note: In the above file, all the property values are user-defined and you can make changes according to your Hadoop infrastructure.
yarn-site.xml
This file is used to configure yarn into Hadoop. Open the yarn-site.xml file and add the following properties in between the <configuration>, </configuration> tags in this file.
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
mapred-site.xml
This file is used to specify which MapReduce framework we are using. By default, Hadoop contains a template of yarn-site.xml. First of all, it is required to copy the file from mapred-site,xml.template to mapred-site.xml file using the following command.
$ cp mapred-site.xml.template mapred-site.xml
Open mapred-site.xml file and add the following properties in between the <configuration>, </configuration>tags in this file.
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
Verifying Hadoop Installation
The following steps are used to verify the Hadoop installation.
Step 1: Name Node Setup
Set up the namenode using the command "hdfs namenode -format" as follows.
$ cd ~
$ hdfs namenode -format
The expected result is as follows.
10/24/14
21:30:55 INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = localhost/192.168.1.11
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 2.4.1
...
...
10/24/14 21:30:56 INFO common.Storage: Storage directory
/home/hadoop/hadoopinfra/hdfs/namenode has been successfully formatted.
10/24/14 21:30:56 INFO namenode.NNStorageRetentionManager: Going to
retain 1 images with txid >= 0
10/24/14 21:30:56 INFO util.ExitUtil: Exiting with status 0
10/24/14 21:30:56 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at localhost/192.168.1.11
************************************************************/
Step 2: Verifying Hadoop dfs
The following command is used to start dfs. Executing this command will start your Hadoop file system.
$ start-dfs.sh
The expected output is as follows:
10/24/14
21:37:56
Starting namenodes on [localhost]
localhost: starting namenode, logging to /home/hadoop/hadoop
2.4.1/logs/hadoop-hadoop-namenode-localhost.out
localhost: starting datanode, logging to /home/hadoop/hadoop
2.4.1/logs/hadoop-hadoop-datanode-localhost.out
Starting secondary namenodes [0.0.0.0]
Step 3: Verifying Yarn Script
The following command is used to start the yarn script. Executing this command will start your yarn daemons.
$ start-yarn.sh
The expected output as follows:
starting yarn daemons
starting resourcemanager, logging to /home/hadoop/hadoop
2.4.1/logs/yarn-hadoop-resourcemanager-localhost.out
localhost: starting nodemanager, logging to /home/hadoop/hadoop
2.4.1/logs/yarn-hadoop-nodemanager-localhost.out
Step 4: Accessing Hadoop on Browser
The default port number to access Hadoop is 50070. Use the following url to get Hadoop services on browser.
http://localhost:50070/
Step 5: Verify All Applications for Cluster
The default port number to access all applications of cluster is 8088. Use the following url to visit this service.
http://localhost:8088/
Hadoop学习日志- install hadoop的更多相关文章
- 大数据Hadoop学习之搭建hadoop平台(2.2)
关于大数据,一看就懂,一懂就懵. 一.概述 本文介绍如何搭建hadoop分布式集群环境,前面文章已经介绍了如何搭建hadoop单机环境和伪分布式环境,如需要,请参看:大数据Hadoop学习之搭建had ...
- [转帖]hadoop学习笔记:hadoop文件系统浅析
hadoop学习笔记:hadoop文件系统浅析 https://www.cnblogs.com/sharpxiajun/archive/2013/06/15/3137765.html 1.什么是分布式 ...
- Hadoop学习笔记【Hadoop家族成员概述】
Hadoop家族成员概述 一.Hadoop简介 1.1 什么是Hadoop? Hadoop是一个分布式系统基础架构,由Apache基金会所开发,目前Yahoo!是其最重要的贡献者. Hadoop实现了 ...
- Hadoop学习4--安装Hadoop
首先献上Hadoop下载地址: http://apache.fayea.com/hadoop/core/ 选择相应版本,点一下,直接进行http下载了. 对原来写的一篇文章,相当不满意,过于粗糙了,于 ...
- [Hadoop] Hadoop学习笔记之Hadoop基础
1 Hadoop是什么? Google公司发表了两篇论文:一篇论文是“The Google File System”,介绍如何实现分布式地存储海量数据:另一篇论文是“Mapreduce:Simplif ...
- hadoop学习第一天-hadoop初步环境搭建&伪分布式计算配置(详细)
一.虚拟机环境搭建 我们用的虚拟机为vmware,Linux镜像为centOS6.5. vmware安装 安装没什么多说的,一路下一步,但是在新建虚拟机的时候有两个地方需要注意: 1.分配处理器1个就 ...
- 大数据Hadoop学习之搭建Hadoop平台(2.1)
关于大数据,一看就懂,一懂就懵. 一.简介 Hadoop的平台搭建,设置为三种搭建方式,第一种是"单节点安装",这种安装方式最为简单,但是并没有展示出Hadoop的技术优势,适合 ...
- 大数据Hadoop学习之了解Hadoop(1)
关于大数据,一看就懂,一懂就懵. 大数据的发展也有些年头了,如今正走在风口浪尖上,作为小白,我也来凑一份热闹. 大数据经过多年的发展,有着不同的实现方案和分支,不过,要说大数据实现方案中的翘楚,那就是 ...
- 【Hadoop学习之三】Hadoop全分布式安装
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop3.1.1 全分布式就是集群,注意配置主机名. ...
随机推荐
- 数据分布转换:非正态 -> 正态
来源:丁香园论坛:SPSS上的把非正态分布数据转换为正态分布数据 一楼 可以应用变量变换的方法,将不服从正态分布的资料转化为非正态分布或近似正态分布.常用的变量变换方法有对数变换.平方根变换.倒数变换 ...
- 使用EntityFramework6连接MySql数据库(code first方式)
demo托管地址:http://git.oschina.net/uustudy/ASP.NET-CodeFirst-MySQL-Demo.git 之前的是db first(地址:http://www. ...
- 【腾讯Bugly干货分享】跨平台 ListView 性能优化
本文来自于腾讯Bugly公众号(weixinBugly),未经作者同意,请勿转载,原文地址:https://mp.weixin.qq.com/s/FbiSLPxFdGqJ00WgpJ94yw 导语 精 ...
- JS事件调试 - 查找HTML元素绑定的事件以及绑定代码所在位置
日常的网页开发调试工作中,经常需要知道指定的某个网页元素绑定了哪些事件以及绑定代码的位置,下面介绍三种用来跟踪页面中的事件的方法. 1.使用firefox调试 我们可以使用firefox的debug工 ...
- Web缓存杂谈
一.概述 缓存通俗点,就是将已经得到的‘东东’存放在一个相对于自己而言,尽可能近的地方,以便下次需要时,不会再二笔地跑到起始点(很远的地方)去获取,而是就近解决,从而缩短时间和节约金钱(坐车要钱嘛). ...
- 开源Word读写组件DocX 的深入研究和问题总结
一. 前言 前两天看到了asxinyu大神的[原创]开源Word读写组件DocX介绍与入门,正好我也有类似的自动生成word文档得需求,于是便仔细的研究了这个DocX. 我也把它融入到我的项目当中并进 ...
- 计算机程序的思维逻辑 (53) - 剖析Collections - 算法
之前几节介绍了各种具体容器类和抽象容器类,上节我们提到,Java中有一个类Collections,提供了很多针对容器接口的通用功能,这些功能都是以静态方法的方式提供的. 都有哪些功能呢?大概可以分为两 ...
- jvm系列(六):jvm调优-从eclipse开始
jvm调优-从eclipse开始 概述 什么是jvm调优呢?jvm调优就是根据gc日志分析jvm内存分配.回收的情况来调整各区域内存比例或者gc回收的策略:更深一层就是根据dump出来的内存结构和线程 ...
- C语言之链表list
#include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <string.h& ...
- GIS部分理论知识备忘随笔
文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.高斯克吕格投影带换算 某坐标的经度为112度,其投影的6度带和3度带 ...