转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud

Problem J
GCD Extreme (II)
Input: Standard Input

Output: Standard Output

Given the value of N, you will have to find the value of G. The definition of G is given below:

Here GCD(i,j) means the greatest common divisor of integer i and integer j.

For those who have trouble understanding summation notation, the meaning of G is given in the following code:

G=0;

for(i=1;i<N;i++)

for(j=i+1;j<=N;j++)

{

G+=gcd(i,j);

}

/*Here gcd() is a function that finds the greatest common divisor of the two input numbers*/

Input

The
input file contains at most 100 lines of inputs. Each line contains an
integer N (1<N<4000001). The meaning of N is given in the problem
statement. Input is terminated by a line containing a single zero.

Output

For
each line of input produce one line of output. This line contains the
value of G for the corresponding N. The value of G will fit in a 64-bit
signed integer.

            Sample Input     Output for Sample Input

10

100

200000

0


 

67

13015

143295493160


 


Problemsetter: Shahriar Manzoor

Special Thanks: SyedMonowarHossain

设dp[i]=gcd(1,i)+gcd(2,i)+……+gcd(i-1,i);

则ans[n]=dp[2]+dp[3]+……+dp[n].

由此问题已经转化成如何求dp[i]了,即需要求1到i-1所有数与i的gcd的和。

设k为满足gcd(x,i)=j且x<i的正整数的个数,则dp[i]=∑j*k;

同时,由于gcd(x,i)=j等价于gcd(x/j,i/j)=1,也就是phi[i/j];

接下来反过来求,那就不需要分解素因子了

  1. #include <iostream>
  2. #include <cstring>
  3. using namespace std;
  4. typedef long long ll;
  5. const int maxn=;
  6. int phi[maxn];
  7. ll dp[maxn+];
  8. ll ans[maxn+];
  9. void phi_table()
  10. {
  11. phi[]=;
  12. for(int i=;i<maxn;i++)
  13. {
  14. if(!phi[i])
  15. {
  16. for(int j=i;j<maxn;j+=i)
  17. {
  18. if(!phi[j])phi[j]=j;
  19. phi[j]=phi[j]/i*(i-);
  20. }
  21. }
  22. }
  23. }
  24. int main()
  25. {
  26. ios::sync_with_stdio(false);
  27. phi_table();
  28. for(int i=;i<maxn;i++)
  29. {
  30. for(int j=i*;j<maxn;j+=i)dp[j]+=(long long)i*(long long)phi[j/i];
  31. }
  32. ans[]=dp[];
  33. for(int i=;i<maxn;i++)ans[i]=ans[i-]+dp[i];
  34. int n;
  35. while(cin>>n&&n)
  36. {
  37. cout<<ans[n]<<endl;
  38. }
  39. return ;
  40. }

UVA 11426 GCD - Extreme (II) (欧拉函数)的更多相关文章

  1. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  2. UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)

    Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...

  3. uva 11426 GCD - Extreme (II) (欧拉函数打表)

    题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...

  4. UVA 11426 - GCD - Extreme (II) 欧拉函数-数学

    Given the value of N, you will have to find the value of G. The definition of G is given below:G =i< ...

  5. UVA 11426 GCD - Extreme (II) 欧拉函数

    分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include ...

  6. UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)

    题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...

  7. UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)

    UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...

  8. UVA11426 GCD - Extreme (II)---欧拉函数的运用

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. UVA11426 GCD - Extreme (II) —— 欧拉函数

    题目链接:https://vjudge.net/problem/UVA-11426 题意: 求 ∑ gcd(i,j),其中 1<=i<j<=n . 题解:1. 欧拉函数的定义:满足 ...

  10. UVA 11426 - GCD - Extreme (II) (数论)

    UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...

随机推荐

  1. webrtc之视频捕获模块--video_capture

    webrtc的video_capture模块,为我们在不同端设备上采集视频提供了一个跨平台封装的视频采集功能,如下图中的webrtc的video_capture源码,现webrtc的video_cap ...

  2. hdu 2191多重背包

    悼念512汶川大地震遇难同胞——珍惜现在,感恩生活 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  3. Android 多渠道打包,上百渠道,秒打签名

    具体工具参见:https://github.com/hpu-spring87/MultiSignTools

  4. 转载:struts标签<s:date>的使用

    转载网址:http://blog.sina.com.cn/s/blog_510fdc8b01010vjx.html s truts 标签 :<s:date/>作用:用来格式化显示日期的格式 ...

  5. Hdu1108(最小公倍数)

    #include <stdio.h> int main() { int Num1,Num2; while(scanf("%d %d",&Num1,&Nu ...

  6. ng-bind-html 的使用

    AngualrJS 提供了指令ng-bind-html 用于绑定包含HTML标签的文档,使用方式: <ANY ng-bind-html=""> ... </ANY ...

  7. Codeforces 414B Mashmokh and ACM

    http://codeforces.com/problemset/problem/414/B 题目大意: 题意:一个序列B1,B2...Bl如果是好的,必须满足Bi | Bi + 1(a | b 代表 ...

  8. ANDROID使用MULTIPARTENTITYBUILDER实现类似FORM表单提交方式的文件上传

    最近在做 Android 端文件上传,要求采用 form 表单的方式提交,项目使用的 afinal 框架有文件上传功能,但是始终无法与php写的服务端对接上,无法上传成功.读源码发现:afinal 使 ...

  9. CF 567C Geometric Progression

    题目大意:输入两个整数 n 和 k ,接下来输入n个整数组成的序列.求该序列中三个数 满足条件的子串个数(要求字串由三个整数a,b,c组成,其中 c = k * b = k * k * a). 思路: ...

  10. exe可执行程序及堆栈分配(转载)

    可执行程序的内存分布 GNU编译器生成的目标文件默认格式为elf(executive linked file)格式,这是Linux系统所采用的可执行链接文件的通用文件格式.elf格式由若干个段(sec ...