http://lightoj.com/volume_showproblem.php?problem=1245

G - Harmonic Number (II)

Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Description

I was trying to solve problem '1234 - Harmonic Number', I wrote the following code

long long H( int n ) {
    long long res = 0;
    for( int i = 1; i <= n; i++ )
        res = res + n / i;
    return res;
}

Yes, my error was that I was using the integer divisions only. However, you are given n, you have to find H(n) as in my code.

Input

Input starts with an integer T (≤ 1000), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n < 231).

Output

For each case, print the case number and H(n) calculated by the code.

Sample Input

11

1

2

3

4

5

6

7

8

9

10

2147483647

Sample Output

Case 1: 1

Case 2: 3

Case 3: 5

Case 4: 8

Case 5: 10

Case 6: 14

Case 7: 16

Case 8: 20

Case 9: 23

Case 10: 27

Case 11: 46475828386

根据题中的代码便可知道题意,题意不多说
 
先看两个例子
1.
n = 10    sqrt(10) = 3     10/sqrt(10) = 3
i        1   2   3         4   5   6   7   8   9   10
n/i    10  5   3         2   2   1   1   1   1    1
 
m =  n/i
sum += m;
m = 1的个数10/1-10/2 = 5;
m = 2的个数10/2-10/3 = 2;
m = 3的个数10/3-10/4 = 1;
 
2.
n = 20     sqrt(20) = 4     20/sqrt(20) = 5
i        1   2   3   4       5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20
n/i    20  10 6   5       4   3   2   2   2    2     1     1     1     1     1     1     1     1    1    1
 
m =  n/i
sum += m;
m = 1的个数20/1-20/2 = 10;
m = 2的个数20/2-20/3 = 4;
m = 3的个数20/3-20/4 = 1;
m = 4的个数20/4-20/5 = 1;
...
m = i的个数20/i - 20/(i + 1)(1<= i <= sqrt(n))
 
这样我们可以得出:sqrt(n)之前的数我们可以直接用for循环来求
sqrt(n)之后的sum += (n/i - n/(i + 1)) * i;
当sqrt(n) = n / sqrt(n)时(如第一个例子10,sum就多加了一个3),sum多加了一个sqrt(n),减去即可;
 
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm> using namespace std;
const int N = ;
typedef long long ll; int main()
{
int t, n, p = ;
ll sum;
scanf("%d", &t);
while(t--)
{
sum = ;
p++;
scanf("%d", &n);
int m = sqrt(n);
for(int i = ; i <= m ; i++)
sum += n / i;
for(int i = ; i <= m; i++)
sum += (n / i - n / (i + )) * i;
if(m == n / m)
sum -= m;
printf("Case %d: %lld\n", p, sum);
}
return ;
}
 

LightOJ 1245 Harmonic Number (II)(找规律)的更多相关文章

  1. LightOj 1245 --- Harmonic Number (II)找规律

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1245 题意就是求 n/i (1<=i<=n) 的取整的和这就是到找规律的题 ...

  2. 1245 - Harmonic Number (II)(规律题)

    1245 - Harmonic Number (II)   PDF (English) Statistics Forum Time Limit: 3 second(s) Memory Limit: 3 ...

  3. G - Harmonic Number (II) 找规律--> 给定一个数n,求n除以1~n这n个数的和。n达到2^31 - 1;

    /** 题目:G - Harmonic Number (II) 链接:https://vjudge.net/contest/154246#problem/G 题意:给定一个数n,求n除以1~n这n个数 ...

  4. LightOJ - 1245 - Harmonic Number (II)(数学)

    链接: https://vjudge.net/problem/LightOJ-1245 题意: I was trying to solve problem '1234 - Harmonic Numbe ...

  5. lightoj 1245 Harmonic Number (II)(简单数论)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1245 题意:求f(n)=n/1+n/2.....n/n,其中n/i保留整数 显 ...

  6. LightOJ 1245 - Harmonic Number (II)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1245 题意:仿照上面那题他想求这么个公式的数.但是递归太慢啦.让你找公式咯. ...

  7. LightOJ 1245 Harmonic Number (II) 水题

    分析:一段区间的整数除法得到的结果肯定是相等的,然后找就行了,每次是循环一段区间,暴力 #include <cstdio> #include <iostream> #inclu ...

  8. LightOJ - 1245 Harmonic Number (II) 求同值区间的和

    题目大意:对下列代码进行优化 long long H( int n ) {    long long res = 0;    for( int i = 1; i <= n; i++ )      ...

  9. LightOJ - 1234 LightOJ - 1245 Harmonic Number(欧拉系数+调和级数)

    Harmonic Number In mathematics, the nth harmonic number is the sum of the reciprocals of the first n ...

随机推荐

  1. Linux多线程(三)(同步互斥)

    1. 线程的同步与互斥 1.1. 线程的互斥 在Posix Thread中定义了一套专门用于线程互斥的mutex函数.mutex是一种简单的加锁的方法来控制对共享资源的存取,这个互斥锁只有两种状态(上 ...

  2. HDU 1160 FatMouse's Speed

    半个下午,总算A过去了 毕竟水题 好歹是自己独立思考,debug,然后2A过的 我为人人的dp算法 题意: 为了支持你的观点,你需要从给的数据中找出尽量多的数据,说明老鼠越重速度越慢这一论点 本着“指 ...

  3. UVa 1395 Slim Span【最小生成树】

    题意:给出n个节点的图,求最大边减最小边尽量小的值的生成树 首先将边排序,然后枚举边的区间,判定在该区间内是否n个点连通,如果已经连通了,则构成一颗生成树, 则此时的苗条度是这个区间内最小的(和kru ...

  4. Using unique option prefix myisam-recover instead of myisam-recover-option

    [转载]关于mysql error.log报"Using unique option prefix myisam-recover instead of myisam-recover-opti ...

  5. memcached的LRU删除机制

    1)memcached不会自动清空缓存的值如果add了一个值,但不去get它,那么这个值过期了,它也不会被清空.解释:memcached不自动检测和清空值,它只当你需要get这个值的时候,才检测这个值 ...

  6. RPi 2B Android telnet ssh

    /*********************************************************************** * RPi 2B Android telnet ssh ...

  7. HDU 1548 A strange lift 奇怪的电梯(BFS,水)

    题意: 有一座电梯,其中楼层从1-n,每层都有一个数字k,当处于某一层时,只能往上走k层,或者下走k层.楼主在a层,问是否能到达第b层? 思路: 在起点时只能往上走和往下走两个选择,之后的每层都是这样 ...

  8. matlab中矩阵和向量的创建

    1.向量的创建 1)直接输入: 行向量:a=[1,2,3,4,5] 列向量:a=[1;2;3;4;5] 2)用“:”生成向量 a=J:K 生成的行向量是a=[J,J+1,…,K] a=J:D:K 生成 ...

  9. 06day2

    蠕虫游戏 模拟 [问题描述] 蠕虫是一个古老的电脑游戏,它有许多版本.但所有版本都有一个共同规则:操纵一条蠕虫在屏幕上转圈,并试着去避免撞到自己或障碍物. 这里我们将模拟一个简单的版本.游戏将在 50 ...

  10. 基于jquery框架的ajax搜索显示

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <hea ...