题目链接

题意 : 给出n个数形成环形,一次转化就是将每一个数前后的d个数字的和对m取余,然后作为这个数,问进行k次转化后,数组变成什么。

思路 :下述来自here

首先来看一下Sample里的第一组数据。
1 2 2 1 2
经过一次变换之后就成了
5 5 5 5 4
它的原理就是
a0 a1 a2 a3 a4
->
(a4+a0+a1) (a0+a1+a2) (a1+a2+a3) (a2+a3+a4) (a3+a4+a0)

如果用矩阵相乘来描述,那就可以表述为1xN和NxN的矩阵相乘,结果仍为1xN矩阵
a = 1 2 2 1 2 
b = 
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1
a * b = 5 5 5 5 4
所以最终结果就是:a * (b^k)

线性代数不合格的同鞋表示压力很大。。

对一个NxN矩阵求k次方,而且这个k很大,N也不小,怎么办?
所以有高手观察到了,这个矩阵长得有点特殊,可以找到一些规律:
b^1 =
[1, 1, 0, 0, 1]
[1, 1, 1, 0, 0]
[0, 1, 1, 1, 0]
[0, 0, 1, 1, 1]
[1, 0, 0, 1, 1]
b^2 =
[3, 2, 1, 1, 2]
[2, 3, 2, 1, 1]
[1, 2, 3, 2, 1]
[1, 1, 2, 3, 2]
[2, 1, 1, 2, 3]
b^3 =
[7, 6, 4, 4, 6]
[6, 7, 6, 4, 4]
[4, 6, 7, 6, 4]
[4, 4, 6, 7, 6]
[6, 4, 4, 6, 7]
b^4 =
[19, 17, 14, 14, 17]
[17, 19, 17, 14, 14]
[14, 17, 19, 17, 14]
[14, 14, 17, 19, 17]
[17, 14, 14, 17, 19]

发现神马没有。就是无论是b的几次幂,都符合A[i][j] = A[i-1][j-1]
高手说是这样推倒出来地:
““”
利用矩阵A,B具有a[i][j]=A[i-1][j-1],B[i][j]=B[i-1][j-1](i-1<0则表示i-1+n,j-1<0则表示j-1+n)
我们可以得出矩阵C=a*b也具有这个性质
C[i][j]=sum(A[i][t]*B[t][j])=sum(A[i-1][t-1],B[t-1][j-1])=sum(A[i-1][t],B[t][j-1])=C[i-1][j-1] 
“”“

这样就可以开一个N大小的数组来存放每次计算的结果了。而没必要用NxN。
N的问题解决了,但是k还是很大,怎么办?

这时候可以用二分法来求b^k
b^k = b^1 * b^4 * b^16 。。。

 //
#include <cstdio>
#include <cstring>
#include <iostream>
#define LL long long using namespace std ; int n,m , d , k ;
LL a[] ,b[] ;
void multi(LL *c,LL *d)
{
LL x[] ;
for(int i = ; i < n ; i++)
{
x[i] = ;
for(int j = ; j < n ; j++)
x[i] += c[j] * d[i >= j ? (i - j) : (n + i - j)] ;//防止是负数,形成环
}
for(int i = ; i < n ; i++)
d[i] = x[i] % m ;
}
int main()
{
while(cin >> n >> m >> d >> k ){
for(int i = ; i < n ; i++)
cin >> a[i] ;
b[] = ;
for(int i = ; i <= d ; i++)
b[i] = b[n - i] = ;
while(k)
{
if(k & )//奇数
multi(b,a) ;
multi(b,b) ;
k >>= ;
}
for(int i = ; i < n ; i++)
if(i == n-) printf("%I64d\n",a[i]) ;
else printf("%I64d ",a[i]) ;
}
return ;
}

计算过程中,必定会出现数字大于M的情况。
切记 x*y = (x%M)*(y%M)

POJ 3150 Cellular Automaton(矩阵乘法+二分)的更多相关文章

  1. [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)

    Cellular Automaton Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 3048   Accepted: 12 ...

  2. POJ 3150 Cellular Automaton(矩阵高速幂)

    题目大意:给定n(1<=n<=500)个数字和一个数字m,这n个数字组成一个环(a0,a1.....an-1).假设对ai进行一次d-step操作,那么ai的值变为与ai的距离小于d的全部 ...

  3. POJ 3150 Cellular Automaton --矩阵快速幂及优化

    题意:给一个环,环上有n块,每块有个值,每一次操作是对每个点,他的值变为原来与他距离不超过d的位置的和,问k(10^7)次操作后每块的值. 解法:一看就要化为矩阵来做,矩阵很好建立,大白书P157页有 ...

  4. POJ 3150 Cellular Automaton(矩阵快速幂)

    Cellular Automaton Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 3504 Accepted: 1421 C ...

  5. POJ - 3150 :Cellular Automaton(特殊的矩阵,降维优化)

    A cellular automaton is a collection of cells on a grid of specified shape that evolves through a nu ...

  6. poj 3150 Cellular Automaton

    首先来看一下Sample里的第一组数据.1 2 2 1 2经过一次变换之后就成了5 5 5 5 4它的原理就是a0 a1 a2 a3 a4->(a4+a0+a1) (a0+a1+a2) (a1+ ...

  7. 【POJ】3150 Cellular Automaton(矩阵乘法+特殊的技巧)

    http://poj.org/problem?id=3150 这题裸的矩阵很容易看出,假设d=1,n=5那么矩阵是这样的 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 ...

  8. BZOJ 4180: 字符串计数 后缀自动机 + 矩阵乘法 + 二分(神题)

    Description SD有一名神犇叫做Oxer,他觉得字符串的题目都太水了,于是便出了一道题来虐蒟蒻yts1999.   他给出了一个字符串T,字符串T中有且仅有4种字符 'A', 'B', 'C ...

  9. POJ 2778 (AC自动机+矩阵乘法)

    POJ 2778 DNA Sequence Problem : 给m个只含有(A,G,C,T)的模式串(m <= 10, len <=10), 询问所有长度为n的只含有(A,G,C,T)的 ...

随机推荐

  1. 直播源格式转换教程——rtmp/rtsp/http/m3u8!!

    之前寻找直播源,发现好多rtmp开头的,或者是rtsp开头的,但是ATV里面的个人链接是支持m3u8格式的.怎么办?小编发现了几个规律,网友可作参考.现在流行的直播地址差不多就这几种需要说明的是并不是 ...

  2. django概述

    一.django的特点 1.提供一体化的web解决方案,什么叫一体化:mvc 2.等你玩儿牛逼了可以拔插组件,换成自己顺手或者更牛逼的组件

  3. QT 的信号与槽

    转载: QT 的信号与槽机制介绍 QT 是一个跨平台的 C++ GUI 应用构架,它提供了丰富的窗口部件集,具有面向对象.易于扩展.真正的组件编程等特点,更为引人注目的是目前 Linux 上最为流行的 ...

  4. P3382: [Usaco2004 Open]Cave Cows 3 洞穴里的牛之三

    首先,我们先确定,最长的曼哈顿距离只可能为 x1+y2-(x2+y2) 和 x1-y1-(x2-y2) 所以我们只需要维护四个值, 分别代表 max(x+y) ; max(x-y) ; min(x+y ...

  5. Windows python 安装 nNumpy、Scipy、matplotlib模块

    折腾了 很久,总结一些. 首先如果python 是64位,安装32位的numpy ,Scipy,或者matplotlib 模块. 会出现很多问题. 比如当你 在python 导入 Numpy 时,导入 ...

  6. 思维认知-读mindhacks杂记

    1. 导语 无意中浏览知乎,搜索到了mindhacks.cn这个个人geek的网址.mindhacks博主本人是牛人程序员一枚,但他的博客主题涵盖的主要内容确是思维改变生活. 博客链接地址:http: ...

  7. java web.xml配置详解(转)

    源出处:java web.xml配置详解 1.常规配置:每一个站的WEB-INF下都有一个web.xml的设定文件,它提供了我们站台的配置设定. web.xml定义: .站台的名称和说明 .针对环境参 ...

  8. 【转】android ListView 几个重要属性

    android ListView 几个重要属性 分类: Android2012-03-08 19:25 19324人阅读 评论(5) 收藏 举报 listviewandroid活动javalistnu ...

  9. HSSF,XSSF和SXSSF的区别

    HSSF是POI工程对Excel 97(-2007)文件操作的纯Java实现 XSSF是POI工程对Excel 2007 OOXML (.xlsx)文件操作的纯Java实现 从POI 3.8版本开始, ...

  10. Java 7 中 NIO.2 的使用——第四节 文件和目录

    Files类提供了很多方法用于检查在于你真正实际去操作一个文件或目录.这些方法强烈推荐,也非常有用,也能避免很多异常的发生.例如,一个很好的习惯就是在你试着移动一个文件从一个地方到另一个地方的时候,先 ...