Logistic回归的牛顿法及DFP、BFGS拟牛顿法求解
牛顿法
# coding:utf-8
import matplotlib.pyplot as plt
import numpy as np def dataN(length):#生成数据
x = np.ones(shape = (length,3))
y = np.zeros(length)
for i in np.arange(0,length/100,0.02):
x[100*i][0]=1
x[100*i][1]=i
x[100*i][2]=i + 1 + np.random.uniform(0,1.2)
y[100*i]=1
x[100*i+1][0]=1
x[100*i+1][1]=i+0.01
x[100*i+1][2]=i+0.01 + np.random.uniform(0,1.2)
y[100*i+1]=0
return x,y def sigmoid(x): #simoid 函数
return 1.0/(1+np.exp(-x)) def DFP(x,y, iter):#DFP拟牛顿法
n = len(x[0])
theta=np.ones((n,1))
y=np.mat(y).T
Gk=np.eye(n,n)
grad_last = np.dot(x.T,sigmoid(np.dot(x,theta))-y)
cost=[]
for it in range(iter):
pk = -1 * Gk.dot(grad_last)
rate=alphA(x,y,theta,pk)
theta = theta + rate * pk
grad= np.dot(x.T,sigmoid(np.dot(x,theta))-y)
delta_k = rate * pk
y_k = (grad - grad_last)
Pk = delta_k.dot(delta_k.T) / (delta_k.T.dot(y_k))
Qk= Gk.dot(y_k).dot(y_k.T).dot(Gk) / (y_k.T.dot(Gk).dot(y_k)) * (-1)
Gk += Pk + Qk
grad_last = grad
cost.append(np.sum(grad_last))
return theta,cost def BFGS(x,y, iter):#BFGS拟牛顿法
n = len(x[0])
theta=np.ones((n,1))
y=np.mat(y).T
Bk=np.eye(n,n)
grad_last = np.dot(x.T,sigmoid(np.dot(x,theta))-y)
cost=[]
for it in range(iter):
pk = -1 * np.linalg.solve(Bk, grad_last)
rate=alphA(x,y,theta,pk)
theta = theta + rate * pk
grad= np.dot(x.T,sigmoid(np.dot(x,theta))-y)
delta_k = rate * pk
y_k = (grad - grad_last)
Pk = y_k.dot(y_k.T) / (y_k.T.dot(delta_k))
Qk= Bk.dot(delta_k).dot(delta_k.T).dot(Bk) / (delta_k.T.dot(Bk).dot(delta_k)) * (-1)
Bk += Pk + Qk
grad_last = grad
cost.append(np.sum(grad_last))
return theta,cost def alphA(x,y,theta,pk): #选取前20次迭代cost最小的alpha
c=float("inf")
t=theta
for k in range(1,200):
a=1.0/k**2
theta = t + a * pk
f= np.sum(np.dot(x.T,sigmoid(np.dot(x,theta))-y))
if abs(f)>c:
break
c=abs(f)
alpha=a
return alpha def newtonMethod(x,y, iter):#牛顿法
m = len(x)
n = len(x[0])
theta = np.zeros(n)
cost=[]
for it in range(iter):
gradientSum = np.zeros(n)
hessianMatSum = np.zeros(shape = (n,n))
for i in range(m):
hypothesis = sigmoid(np.dot(x[i], theta))
loss =hypothesis-y[i]
gradient = loss*x[i]
gradientSum = gradientSum+gradient
hessian=[b*x[i]*(1-hypothesis)*hypothesis for b in x[i]]
hessianMatSum = np.add(hessianMatSum,hessian)
hessianMatInv = np.mat(hessianMatSum).I
for k in range(n):
theta[k] -= np.dot(hessianMatInv[k], gradientSum)
cost.append(np.sum(gradientSum))
return theta,cost def tesT(theta, x, y):#准确率
length=len(x)
count=0
for i in xrange(length):
predict = sigmoid(x[i, :] * np.reshape(theta,(3,1)))[0] > 0.5
if predict == bool(y[i]):
count+= 1
accuracy = float(count)/length
return accuracy def showP(x,y,theta,cost,iter):#作图
plt.figure(1)
plt.plot(range(iter),cost)
plt.figure(2)
color=['or','ob']
for i in xrange(length):
plt.plot(x[i, 1], x[i, 2],color[int(y[i])])
plt.plot([0,length/100],[-theta[0],-theta[0]-theta[1]*length/100]/theta[2])
plt.show()
length=200
iter=5
x,y=dataN(length) theta,cost=BFGS(x,y,iter)
print theta #[[-18.93768161][-16.52178427][ 16.95779981]]
print tesT(theta, np.mat(x), y) #0.935
showP(x,y,theta.getA(),cost,iter) theta,cost=DFP(x,y,iter)
print theta #[[-18.51841028][-16.17880599][ 16.59649161]]
print tesT(theta, np.mat(x), y) #0.935
showP(x,y,theta.getA(),cost,iter) theta,cost=newtonMethod(x,y,iter)
print theta #[-14.49650536 -12.78692552 13.05843361]
print tesT(theta, np.mat(x), y) #0.935
showP(x,y,theta,cost,iter)
Logistic回归的牛顿法及DFP、BFGS拟牛顿法求解的更多相关文章
- 机器学习公开课笔记(3):Logistic回归
Logistic 回归 通常是二元分类器(也可以用于多元分类),例如以下的分类问题 Email: spam / not spam Tumor: Malignant / benign 假设 (Hypot ...
- 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...
- 机器学习——logistic回归,鸢尾花数据集预测,数据可视化
0.鸢尾花数据集 鸢尾花数据集作为入门经典数据集.Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数 ...
- 【机器学习速成宝典】模型篇03逻辑斯谛回归【Logistic回归】(Python版)
目录 一元线性回归.多元线性回归.Logistic回归.广义线性回归.非线性回归的关系 什么是极大似然估计 逻辑斯谛回归(Logistic回归) 多类分类Logistic回归 Python代码(skl ...
- 【导包】使用Sklearn构建Logistic回归分类器
官方英文文档地址:http://scikit-learn.org/dev/modules/generated/sklearn.linear_model.LogisticRegression.html# ...
- 对线性回归,logistic回归和一般回归的认识
原文:http://www.cnblogs.com/jerrylead/archive/2011/03/05/1971867.html#3281650 对线性回归,logistic回归和一般回归的认识 ...
- 线性回归,logistic回归和一般回归
1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数 ...
- 转载 Deep learning:六(regularized logistic回归练习)
前言: 在上一讲Deep learning:五(regularized线性回归练习)中已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在lo ...
- 机器学习之线性回归---logistic回归---softmax回归
在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题 ...
随机推荐
- JS 防止表单重复提交
<script type="text/javascript"> var checkSubmitFlg = false; function checkSubmit() { ...
- msf生成shellcode
msfpayload windows/exec CMD = calc.exe EXITFUNC=thread C 在kali Linux2.0新版中msfpayload命令已删除,功能已集成到msfv ...
- WPF 基础到企业应用系列索引
转自:http://www.cnblogs.com/zenghongliang/archive/2010/07/09/1774141.html WPF 基础到企业应用系列索引 WPF 基础到企业应用系 ...
- postgreSQL9.1忘记postgres用户密码怎么办
在网络上找了一篇文章http://www.linuxidc.com/Linux/2010-04/25232.htm,如下: Ubuntu 9.10下PostgreSQL 8.4忘记密码的解决方法 Ub ...
- Motorola C118修改滤波器组件
所需工具: 热风枪.恒温焊台.镊子.助焊膏.锡丝.滤波器组件 关于怎么使用热风枪拆屏蔽盖将在后期更新视频,以下为修改滤波器流程.以下热风枪设置温度只针对快克957DW(不同品牌风枪和型号可能会有温差) ...
- Linux Mint下安装JDK
Linux Mint 17下安装的是默认的OpenJDK,可以使用java -version查看 现在需要使用Sun/Oracle官方的JDK:http://www.oracle.com/techne ...
- iOS开发 获取手机信息(UIDevice,NSBundle,NSlocale)
在开发中,需要获取当前设备的一些信息,可以通过UIDevice,NSbundle,NSlocale获取. UIDevice UIDevice 提供了多种属性,类函数及状态通知,可以检测手机电量,定位, ...
- iptables 用法
又有人攻击服务器了,没有办法又的去防,这里简单介绍一种限制指定IP访问的办法. 单个IP的命令是 iptables -I INPUT -s 59.151.119.180 -j DROP 封IP段的命 ...
- AWK处理日志入门(转)
前言 这两天自己挽起袖子处理日志,终于把AWK给入门了.其实AWK的基本使用,学起来也就半天的时间,之前总是靠同事代劳,惰性呀. 此文仅为菜鸟入门,运维们请勿围观. 下面是被处理的日志的示例,不那么标 ...
- VMware虚拟机固定IP后克隆出现无法访问网卡问题
通常我们现在都喜欢使用虚拟机进行实验,进行集群搭建等,在这个过程中,会遇到克隆虚拟机问题,当没有修改任何IP的情况下,克隆后,在逐台修改IP地址是没有问题的,但是,如果我们先设置了固定IP地址后,克隆 ...