Sieve of Eratosthenes (素数筛选算法)

Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number.
For example, if n is 10, the output should be “2, 3, 5, 7″. If n is 20, the output should be “2, 3, 5, 7, 11, 13, 17, 19″.

The sieve of Eratosthenes is one of the most efficient ways to find all primes smaller than n when n is smaller than 10 million or so (Ref Wiki).

Following is the algorithm to find all the prime numbers less than or equal to a given integer n by Eratosthenes’ method:

  1. Create a list of consecutive integers from 2 to n: (2, 3, 4, …, n).
  2. Initially, let p equal 2, the first prime number.
  3. Starting from p, count up in increments of p and mark each of these numbers greater than p itself in the list. These numbers will be 2p, 3p, 4p, etc.; note that some of them may have already been marked.
  4. Find the first number greater than p in the list that is not marked. If there was no such number, stop. Otherwise, let p now equal this number (which is the next prime), and repeat from step 3.

When the algorithm terminates, all the numbers in the list that are not marked are prime.

Explanation with Example:
Let us take an example when n = 50. So we need to print all print numbers smaller than or equal to 50.

We create a list of all numbers from 2 to 50.

According to the algorithm we will mark all the numbers which are divisible by 2.

Now we move to our next unmarked number 3 and mark all the numbers which are multiples of 3.

We move to our next unmarked number 5 and mark all multiples of 5.

We continue this process and our final table will look like below:

So the prime numbers are the unmarked ones: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.

Related Practice Problem

http://www.practice.geeksforgeeks.org/problem-page.php?pid=425

Return two prime numbers

Given an even number ( greater than 2 ), return two prime numbers whose sum will be equal to given number. There are several combinations possible. Print only first such pair.

NOTE: A solution will always exist, read Goldbach’s conjecture.

Also, solve the problem in linear time complexity, i.e., O(n).

Input:

The first line contains T, the number of test cases. The following T lines consist of a number each, for which we'll find two prime numbers.

Note: The number would always be an even number.

Output:

For every test case print two prime numbers space separated, such that the smaller number appears first. Answer for each test case must be in a new line.

Constraints:

1 ≤ T ≤ 70
1 ≤ N ≤ 10000

Example:

Input:

5
74
1024
66 
8
9990

Output:

3 71
3 1021
5 61
3 5
17 9973

import java.util.*;
import java.lang.*;
import java.io.*; class GFG { public static void func(int n) { boolean[] prime = new boolean[n+1];
for(int i=2; i<=n; ++i) {
prime[i] = true;
} for(int p=2; p*p<=n; ++p) {
if(prime[p]) {
for(int k=2*p; k<=n; k+=p) {
prime[k] = false;
}
}
} ArrayList<Integer> rs = new ArrayList<Integer> ();
for(int i=2; i<=n; ++i) {
if(prime[i]) {
rs.add(i);
}
} for(int i=0; i<rs.size(); ++i) {
int first = rs.get(i);
int second = n - first;
if(prime[first] && prime[second]) {
System.out.println(first + " " + second);
break;
}
}
} public static void main (String[] args) {
Scanner in = new Scanner(System.in);
int t = in.nextInt(); for(int i=0; i<t; ++i) {
int n = in.nextInt();
func(n);
}
}
}

algorithm@ Sieve of Eratosthenes (素数筛选算法) & Related Problem (Return two prime numbers )的更多相关文章

  1. Algorithm: Sieve of Eratosthenes

    寻找比n小的所有质数的方法. 2是质数, 2*i都是质数,同样3是质数,3*i也都是质数 代码如下 int n; vector<, true); prime[] = prime[] = fals ...

  2. UVa 1210 (高效算法设计) Sum of Consecutive Prime Numbers

    题意: 给出n,求把n写成若干个连续素数之和的方案数. 分析: 这道题非常类似大白书P48的例21,上面详细讲了如何从一个O(n3)的算法优化到O(n2)再到O(nlogn),最后到O(n)的神一般的 ...

  3. 使用埃拉托色尼筛选法(the Sieve of Eratosthenes)在一定范围内求素数及反素数(Emirp)

    Programming 1.3 In this problem, you'll be asked to find all the prime numbers from 1 to 1000. Prime ...

  4. 埃拉托色尼筛法(Sieve of Eratosthenes)求素数。

    埃拉托色尼筛法(Sieve of Eratosthenes)是一种用来求所有小于N的素数的方法.从建立一个整数2~N的表着手,寻找i? 的整数,编程实现此算法,并讨论运算时间. 由于是通过删除来实现, ...

  5. [原]素数筛法【Sieve Of Eratosthenes + Sieve Of Euler】

    拖了有段时间,今天来总结下两个常用的素数筛法: 1.sieve of Eratosthenes[埃氏筛法] 这是最简单朴素的素数筛法了,根据wikipedia,时间复杂度为 ,空间复杂度为O(n). ...

  6. [Algorithm] Finding Prime numbers - Sieve of Eratosthenes

    Given a number N, the output should be the all the prime numbers which is less than N. The solution ...

  7. 素数筛选法(prime seive)

    素数筛选法比较有名的,较常用的是Sieve of Eratosthenes,为古希腊数学家埃拉托色尼(Eratosthenes 274B.C.-194B.C.)提出的一种筛选法.详细步骤及图示讲解,还 ...

  8. 新疆大学(新大)OJ xju 1009: 一带一路 prim求最短路径+O(n)素数筛选

    1009: 一带一路 时间限制: 1 Sec  内存限制: 128 MB 题目描述 一带一路是去去年习大大提出来的建设“新丝绸之路经济带”和“21世纪海上丝绸之路”的战略构想.其中就包括我们新疆乌鲁木 ...

  9. “计数质数”问题的常规思路和Sieve of Eratosthenes算法分析

    题目描述 题目来源于 LeetCode 204.计数质数,简单来讲就是求"不超过整数 n 的所有素数个数". 常规思路 一般来讲,我们会先写一个判断 a 是否为素数的 isPrim ...

随机推荐

  1. C# 时间戳和时间的相互转换

    时间戳定义为从格林威治时间 1970年01月01日00时00分00秒(北京时间1970年01月01日08时00分00秒)起至现在的总秒数. C#格式时间转时间戳Timestamp private in ...

  2. [androd] android的在线源码网站,各个版本都有(目前已到俺android 4.2,但不包含kernel部分的代码)

    android的在线源码阅读网站,各个版本都有(目前最新版本已到android 4.2,但不包含kernel部分的代码) 这个网站最大的特点是:可以在网页上方的搜索框,搜索整个网站所存储的源码中的字符 ...

  3. gulp使用外部配置文件

    这很有好处,因为它使得任务很干净,并且 config.json 可以被其他的任务运行器(例如grunt)重复利用. config.json { "desktop" : { &quo ...

  4. jquery ajax的async属性的理解

    $(function(){ queryTemplateSort(); // fillAddTemplatePage(); function queryTemplateSort() { $.ajax({ ...

  5. 51nod1175 区间中第K大的数

    裸的主席树. #include<cstdio> #include<cstring> #include<cctype> #include<algorithm&g ...

  6. highCharts入门-强大的图表库插件

    简介         Highcharts 是一个用纯JavaScript编写的一个图表库, 能够很简单便捷的在web网站或是web应用程序添加有交互性的图表,并且免费提供给个人学习.个人网站和非商业 ...

  7. WebForm页面运行机制

    阅读目录 开始 WebForm前台与后台的关系及运行原理 前台页面 <% @ Page Language="C#" AutoEventWireup="true&qu ...

  8. UVa 10498 Happiness! (线性规划)

    题意 将N种食品分给m个参赛选手,一个单位的某食品给某个选手一定满足度,每个选手有一个最大满足度.为了避免浪费,分给每一个选手的食品都不超越选手的满足度.已知的各种食品的单价,求最多可以花的钱. 思路 ...

  9. POJ 3565 Ants (最小权匹配)

    题意 给出一些蚂蚁的点,给出一些树的点,两两对应,使他们的连线不相交,输出一种方案. 思路 一开始没想到怎么用最小权匹配--后来发现是因为最小权匹配的方案一定不相交(三角形两边之和大于第三边)--还是 ...

  10. impersonate a user

    // This sample demonstrates the use of the WindowsIdentity class to impersonate a user. // IMPORTANT ...