【问题描述】
给定一个多项式(ax + by)^k,请求出多项式展开后(x^n)*(y^m)项的系数。
【输入】
输入文件名为 factor.in。
共一行,包含 5 个整数,分别为a,b,k,n,m,每两个整数之间用一个空格隔开。
【输出】
输出文件名为 factor.out。
输出共 1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007 取模后的结果。
【输入输出样例】

factor.in

factor.out

1 1 3 1 2

3

【数据范围】

对于 30%的数据,有0≤k≤10;
对于 50%的数据,有a = 1,b = 1;
对于 100%的数据,有0≤k≤1,000,0≤n, m≤k,且n + m = k,0≤a,b≤1,000,000。

分析:

首先弄懂样例,然后从简单数据入手找规律。

(a*x+b*y)^2=(a*x)^2+2*a*b*x*y+(b*y)^2

(a*x+b*y)^3=(a*x)^3+3*(a^2)*b*(x^2)*y+3*a*(b^2)*x*(y^2)+(b*y)^3

(a*x+b*y)^4=(a*x)^4+4*(a^3)*b*(x^3)*y+6*(a^2)*(b^2)*(x^2)*(y^2)+4*a*(b^3)*x*(y^3)+(b*y)^3 

(a*x+b*y)^5=......

通过这几个简单的公式可以得出(x^n)*(y^m)的系数为t*(a^n)*(b^m),t值如下所示:

1 2 1 

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

.........

这不就是杨辉三角么(当然也是所有的组合情况C(k,n))

若f[i,j]表示(a*x+b*y)^i展开后的系数

(a^n)*(b^m)的系数为f[i,i-n+1]

f[i,j]:=f[i-1,j-1]+f[i-1,j];

结果:ans=f[k,k-n+1]*(a^n)*(b^m)

由于题目要求输出对10007 取模后的结果,则有:

f[i,j]:=((f[i-1,j-1] mod 10007)+(f[i-1,j]mod 10007))mod 10007;

a^n=((a^(N-1))mod 10007*a)mod 10007

b^m=((b^(m-1))mod 10007*b)mod 10007

(a^n可以边乘边取余数的方法做,也可用快速幂)。

注意:边界条件k=0,k=n等。

 const
maxk=;
var
a,b,k,n,m,i,j,ans:longint;
f:array[..maxk,..maxk] of longint;
begin
readln(a,b,k,n,m);
fillchar(f,sizeof(f),);
f[,]:=; f[,]:=;
for i:= to k do begin f[i,]:=; f[i,i+]:=; end;
for i:= to k do
for j:= to i do
f[i,j]:=(f[i-,j-]+f[i-,j] ) mod ;
ans:=;
for i:= to n do ans:=(ans *a) mod ;
for i:= to m do ans :=(ans *b)mod ;
ans:=(f[k,k-n+]*ans) mod ;
if k= then writeln() else writeln(ans);
end.

计算系数(noip2011)的更多相关文章

  1. 计算系数(NOIP2011提高LuoguP1313)

    一道数论好题,知识点涉及扩展欧几里得,快速幂,逆元,二项式定理,模运算,组合数等. (别问为啥打了快速幂不用费马小求逆元...我就练习下扩欧) (数据就应该再加大些卡掉n^2递推求组合数的) #inc ...

  2. NOIP2011 day2 第一题 计算系数

    计算系数 NOIP2011 day2 第一题 描述 给定一个多项式(ax+by)^k,请求出多项式展开后x^n*y^m项的系数. 输入格式 共一行,包含5 个整数,分别为 a ,b ,k ,n ,m, ...

  3. 一本通1648【例 1】「NOIP2011」计算系数

    1648: [例 1]「NOIP2011」计算系数 时间限制: 1000 ms         内存限制: 524288 KB [题目描述] 给定一个多项式 (ax+by)k ,请求出多项式展开后 x ...

  4. 题解 【NOIP2011】计算系数

    [NOIP2011]计算系数 Description 给定一个多项式 (ax+by)^k ,请求出多项式展开后 x^n * y^m 项的系数. Input 共一行,包含 5 个整数,分别为 a,b,k ...

  5. 洛谷P1313 [NOIP2011提高组Day2T1]计算系数

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

  6. 【转】TYVJ 1695 计算系数(NOIP2011 TG DAY2 1)

    计算系数 题目描述 给定一个多项式(ax + by)k,请求出多项式展开后xn ym项的系数. [数据范围] 对于 30%的数据,有0≤k≤10: 对于 50%的数据,有a = 1,b = 1: 对于 ...

  7. NOIP2011 计算系数

    1计算系数 给定一个多项式 (ax + by)k ,请求出多项式展开后 x n y m 项的系数. [输入] 输入文件名为 factor.in. 共一行,包含 5 个整数,分别为 a,b,k,n,m, ...

  8. luoguP1313 计算系数 题解(NOIP2011)

    P1313 计算系数 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include<cm ...

  9. 【NOIP2011提高组】计算系数

    计算系数 算法:真·滚动数组模拟!!! 马上CSP/S了,这是远在今年暑假前的一天的校内考试题中的一道.当时做的时候不会组合数,不会二项式定理,不会DP,不会……只知道应该n*n的空间存一个杨辉三角形 ...

随机推荐

  1. stdcall与cdecl的区别

    1 区别 VC++的C/C++函数有两种基本的调用约定:__stdcall.__cdecl.它们有什么区别呢?请参考下表:     __stdcall __cdecl 函数代码 C int __std ...

  2. js封装,一个JS文件引用多个JS文件

    (function() { //加载   varobj =  {};   /**    * 动态加载脚本函数    * @param url 要加载的脚本路径    * @param callback ...

  3. IOS开发—UIDatePicker 日期/时间选取器(滚轮)

    UIDatePicker 是一个控制器类,封装了 UIPickerView,但是他是UIControl的子类,专门用于接受日期.时间和持续时长的输入.日期选取器的各列会按照指定的风格进行自动配置,这样 ...

  4. [Java] Java中List 去掉重复的值,并保持原先List顺序

    private List<YourBean> removeDuplicate(List<YourBean> list) { Set<YourBean> set = ...

  5. ARM指令集(上)

    ADuC702x可以用两套指令集:ARM指令集和Thumb指令集.本小节介绍ARM指令集.在介绍ARM指令集之前,先介绍指令的格式. A.2.1  指令格式         (1)基本格式       ...

  6. 接入WebSocket

    闲扯 WebSocket 以前没用过,之前写过一篇博客是基于原生socket的(查看)比较复杂,慎入.今天另外一个APP需要接websocket了,然后便找到了facebook的 SocketRock ...

  7. linq to xml学习

    http://www.cnblogs.com/greatverve/archive/2010/07/09/linq-to-xml-add-delete-update-query.html 记录一下,别 ...

  8. MATLAB画图

    画图代码 clear % http://www.peteryu.ca/tutorials/matlab/visualize_decision_boundaries % load RankData % ...

  9. for循环的嵌套——7月24日

      练习一:输入一个正整数,用for循环嵌套求阶乘的和 //输入一个正整数,求1!+2!+....+n! 用for循环嵌套 Console.Write("请输入一个正整数:"); ...

  10. kafka技术要点

    转载:http://blog.csdn.net/caisini_vc/article/details/48007297 Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成为 ...