Persistent Bookcase

Problem Description:

Recently in school Alina has learned what are the persistent data structures: they are data structures that always preserves the previous version of itself and access to it when it is modified.

After reaching home Alina decided to invent her own persistent data structure. Inventing didn't take long: there is a bookcase right behind her bed. Alina thinks that the bookcase is a good choice for a persistent data structure. Initially the bookcase is empty, thus there is no book at any position at any shelf.

The bookcase consists of n shelves, and each shelf has exactly m positions for books at it. Alina enumerates shelves by integers from 1 to n and positions at shelves — from 1 to m. Initially the bookcase is empty, thus there is no book at any position at any shelf in it.

Alina wrote down q operations, which will be consecutively applied to the bookcase. Each of the operations has one of four types:

1 i j — Place a book at position j at shelf i if there is no book at it.

2 i j — Remove the book from position j at shelf i if there is a book at it.

3 i — Invert book placing at shelf i. This means that from every position at shelf i which has a book at it, the book should be removed, and at every position at shelf i which has not book at it, a book should be placed.

4 k — Return the books in the bookcase in a state they were after applying k-th operation. In particular, k = 0 means that the bookcase should be in initial state, thus every book in the bookcase should be removed from its position.

After applying each of operation Alina is interested in the number of books in the bookcase. Alina got 'A' in the school and had no problem finding this values. Will you do so?

Input:

The first line of the input contains three integers n, m and q (1 ≤ n, m ≤ 103, 1 ≤ q ≤ 105) — the bookcase dimensions and the number of operations respectively.

The next q lines describes operations in chronological order — i-th of them describes i-th operation in one of the four formats described in the statement.

It is guaranteed that shelf indices and position indices are correct, and in each of fourth-type operation the number k corresponds to some operation before it or equals to 0.

Output:

For each operation, print the number of books in the bookcase after applying it in a separate line. The answers should be printed in chronological order.

Sample Input:

2 3 3

1 1 1

3 2

4 0

4 2 6

3 2

2 2 2

3 3

3 2

2 2 2

3 2

2 2 2

3 2

2 2 1

Sample Output:

1

4

0

2

1

3

3

2

4

2

1

一般的dfs都要回溯。

【题目链接】Codeforces 707D

【题目类型】dfs+bitset

&题意:

n层(标记1n)书架,每层有m个位置(标记1m),现有以下四种操作:

①1 i j:在书架的第i层第j个位置放置一本书(若此处原本没有书);

②2 i j:取走书架的第i层第j个位置的书(若此处原本有书);

③3 i:将书架第i层每个位置作如下处理,若该位置有书,则拿走;若没有书,则放置一本书;

④4 k:将书架的状态恢复至第k次操作之后的状态,若k=0,则恢复初始状态,即书架上没有一本书

问每次操作之后,书架上有多少本书

&题解:

首先你要去看看这个博客:博客链接 这上面把思路已经说的很清楚了,我在补充点:

这题是一个离线的题,什么叫离线呢?就是存到数组里处理,之后在输出的题(貌似是这样的- -)然而知道这个并没有什么卵用。这题有两个难点。

1.建树:应该学习下这种建树的方式。vector[i]中i是父亲,后面的是儿子,还要注意是把这一个状态接到父亲那里,所以每次push_back的都是i。并且qu询问数组要从1开始存,因为我们要找一个最大的父亲,是0,他只有儿子,所以要从1开始。

2.dfs:dfs的时候,必须要清楚的知道dfs的参数代表的是什么?我的代码里的x代表的是父亲,循环里的v代表的是儿子,也可以想成x的下一个状态就是v,之后就是处理3种情况了,但为什么没有第4种呢?因为第4种在建树的时候就已经处理了,连上了以前的边,每次dfs的时候都会走到,所以就不用在特判第4种了。

还有,要注意dfs是给ans赋值tot的时候,一定是给ans[v]=tot 而不是ans[x]=tot,这块我调了好长时间才发现的,因为我们求的是第v次询问的答案,而不是第x次的,因为v代表的是这个状态,而x是上个状态。

【时间复杂度】O(n*q)

&代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
#define cle(a,val) memset(a,(val),sizeof(a))
const int MAXN = 1000 + 5 ;
const int MAXQ = 100000 + 5 ;
bitset<MAXN> pos[MAXN];
int qu[MAXQ][3], sum[MAXN], n, m, q;
ll ans[MAXQ];
vector<int>tree[MAXQ];
ll tot;
void dfs(int x) {
for (int i = 0; i < tree[x].size(); i++) {
int v = tree[x][i];
bool did = 0;
if (qu[v][0] == 1 && !pos[qu[v][1]].test(qu[v][2])) {
pos[qu[v][1]].set(qu[v][2]);
sum[qu[v][1]]++;
tot++;
did = 1;
}
if (qu[v][0] == 2 && pos[qu[v][1]].test(qu[v][2])) {
pos[qu[v][1]].reset(qu[v][2]);
sum[qu[v][1]]--;
tot--;
did = 1;
}
if (qu[v][0] == 3) {
int d = sum[qu[v][1]];
sum[qu[v][1]] = m - d;
tot += sum[qu[v][1]] - d;
pos[qu[v][1]].flip();
}
ans[v] = tot;
dfs(v);
if (qu[v][0] == 1 && did) {
pos[qu[v][1]].reset(qu[v][2]);
sum[qu[v][1]]--;
tot--;
}
if (qu[v][0] == 2 && did) {
pos[qu[v][1]].set(qu[v][2]);
sum[qu[v][1]]++;
tot++;
}
if (qu[v][0] == 3) {
int d = sum[qu[v][1]];
sum[qu[v][1]] = m - d;
tot += sum[qu[v][1]] - d;
pos[qu[v][1]].flip();
}
}
}
void Solve() {
while (~scanf("%d %d %d", &n, &m, &q)) {
for (int i = 1; i <= q; i++) {
scanf("%d", &qu[i][0]);
if (qu[i][0] <= 2) {
scanf("%d %d", &qu[i][1], &qu[i][2]);
tree[i - 1].push_back(i);
}
else {
scanf("%d", &qu[i][1]);
if (qu[i][0] == 3) tree[i - 1].push_back(i);
else tree[qu[i][1]].push_back(i);
}
}
tot = 0;
dfs(0);
for (int i = 1; i <= q; i++) {
printf("%I64d\n", ans[i]);
}
}
}
int main() {
Solve();
return 0;
}

Codeforces Round #368 (Div. 2) D. Persistent Bookcase的更多相关文章

  1. Codeforces Round #368 (Div. 2) D. Persistent Bookcase 离线 暴力

    D. Persistent Bookcase 题目连接: http://www.codeforces.com/contest/707/problem/D Description Recently in ...

  2. Codeforces Round #368 (Div. 2)D. Persistent Bookcase DFS

    题目链接:http://codeforces.com/contest/707/my 看了这位大神的详细分析,一下子明白了.链接:http://blog.csdn.net/queuelovestack/ ...

  3. Codeforces Round #368 (Div. 2)

    直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...

  4. Codeforces Round #368 (Div. 2) C. Pythagorean Triples(数学)

    Pythagorean Triples 题目链接: http://codeforces.com/contest/707/problem/C Description Katya studies in a ...

  5. Codeforces Round #368 (Div. 2) B. Bakery (模拟)

    Bakery 题目链接: http://codeforces.com/contest/707/problem/B Description Masha wants to open her own bak ...

  6. Codeforces Round #368 (Div. 2) A. Brain's Photos (水题)

    Brain's Photos 题目链接: http://codeforces.com/contest/707/problem/A Description Small, but very brave, ...

  7. D. Persistent Bookcase(Codeforces Round #368 (Div. 2))

    D. Persistent Bookcase time limit per test 2 seconds memory limit per test 512 megabytes input stand ...

  8. Codeforces Round #368 (Div. 2) E. Garlands 二维树状数组 暴力

    E. Garlands 题目连接: http://www.codeforces.com/contest/707/problem/E Description Like all children, Ale ...

  9. Codeforces Round #368 (Div. 2) C. Pythagorean Triples 数学

    C. Pythagorean Triples 题目连接: http://www.codeforces.com/contest/707/problem/C Description Katya studi ...

随机推荐

  1. FZU-2216 The Longest Straight (二分枚举)

    题目大意:给n个0~m之间的数,如果是0,那么0可以变为任意的一个1~m之间的一个数.从中选出若干个数,使构成一个连续的序列.问能构成的最长序列的长度为多少? 题目分析:枚举连续序列的起点,二分枚举二 ...

  2. CentOS 中PHP开启 GD功能

    yum install php-gd 然后重启服务器: service httpd restart

  3. linux账户管理[转自vbird]

    useraddpasswdchageusermoduserdelfingerchfnchshidgroupaddgroupmodgroupdelgpasswd useradd 完全参考默认值创建一个用 ...

  4. Machine and Deep Learning with Python

    Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstiti ...

  5. 11G RAC 进程启动顺序

  6. Apache模块 mod_proxy 转自http://www.php100.com/manual/apache2/mod/mod_proxy.html

    Apache模块 mod_proxy 说明 提供HTTP/1.1的代理/网关功能支持 状态 扩展(E) 模块名 proxy_module 源文件 mod_proxy.c 概述 警告 在您没有对服务器采 ...

  7. Python使用MySQL数据库的方法以及一个实例

    使用环境:Windows+python3.4+MySQL5.5+Navicat 一.创建连接 1.准备工作,想要使用Python操作MySQL,首先需要安装MySQL-Python的包,在Python ...

  8. dl,dt,dd,ul,li,ol区别

    dl.dt.dd也是列表项,不过它们被忽视得比较厉害,人们只知道ul.ol.li,却经常漠视它们的存在,其实有时候,dl.dt.dd也是非常好用的,这两个家族是近亲,很多地方都是一模一样. dl类似u ...

  9. SET ROWCOUNT,SET NOCOUNT

    SET ROWCOUNT (Transact-SQL) 在停止特定查询之前要处理的行数(整数). 重要提示 在 SQL Server 的将来版本中,使用 SET ROWCOUNT 将不会影响 DELE ...

  10. Oracle数据库—— 事务处理与并发控制

    一.涉及内容 1.理解事务的概念和几个特性. 2.熟练掌握事务管理命令的使用. 3.理解并发操作的概念和数据库锁的类型. 二.具体操作 (12.5 实验) 1. 分析以下代码,说出代码中的哪些部分体现 ...