BZOJ3503: [Cqoi2014]和谐矩阵
题解:
如果第一行的数知道了,我们就可以推出其他行的数。
那么如何判断第一行的数的一种填法是否合法呢?很简单,我们递推出m+1行的数,当且仅当这一行都是0时满足题意。
那么,我们就有了一种想法。
直接把m+1行的每个数用x[1..n]表示出来,这一定是个系数只为0/1的式子。然后让这个异或值=0,就可以解异或方程组了。
系数怎么推呢?
for1(i,n)b[][i]=(ll)<<i-;
for2(i,,m+)
for1(j,n)
b[i][j]=b[i-][j]^b[i-][j-]^b[i-][j+]^b[i-][j];
然后解方程就可以了。
代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 50+5
#define maxm 100000+5
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define for4(i,x) for(int i=head[x],y=e[i].go;i;i=e[i].next,y=e[i].go)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,m;
ll a[maxn][maxn],b[maxn][maxn],c[maxn][maxn];
inline void gauss()
{
for1(i,n)
{
int k=i;
while(k<=n&&!a[k][i])k++;
if(k>n)continue;
for2(j,i,n+)swap(a[i][j],a[k][j]);
for2(j,i+,n)if(a[j][i])
for2(k,i,n+)
a[j][k]^=a[i][k];
}
for3(i,n,)
{
c[][i]=a[i][n+];
if(!a[i][i]){c[][i]=;continue;}
for2(j,i+,n)if(a[i][j])c[][i]^=c[][j];
}
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
m=read();n=read();
for1(i,n)b[][i]=(ll)<<i-;
for2(i,,m+)
for1(j,n)
b[i][j]=b[i-][j]^b[i-][j-]^b[i-][j+]^b[i-][j];
for1(i,n)
for1(j,n)
a[i][j]=b[m+][i]>>(j-)&;
gauss();
for2(i,,m)
for1(j,n)
c[i][j]=c[i-][j]^c[i-][j-]^c[i-][j+]^c[i-][j];
for1(i,m){for1(j,n-)printf("%d ",c[i][j]);printf("%d\n",c[i][n]);}
return ;
}
BZOJ3503: [Cqoi2014]和谐矩阵的更多相关文章
- 【高斯消元】BZOJ3503 [Cqoi2014]和谐矩阵
3503: [Cqoi2014]和谐矩阵 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1197 Solved: ...
- bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)
http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...
- BZOJ3503:[CQOI2014]和谐矩阵(高斯消元,bitset)
Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本 身,及他上下左右的4个元素(如果存在). 给定矩阵的行数和列数,请计算并输 ...
- BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )
偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...
- BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元
BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元 题意: 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果 ...
- 3503: [Cqoi2014]和谐矩阵
3503: [Cqoi2014]和谐矩阵 链接 分析: 对于每个点,可以列出一个方程a[i][j]=a[i][j-1]^a[i][j+1]^a[i-1][j]^a[i+1][j],于是可以列出n*m个 ...
- P3164 [CQOI2014]和谐矩阵
P3164 [CQOI2014]和谐矩阵 乱写能AC,暴力踩标程(雾 第一眼 诶这题能暴力枚举2333!!! 第二眼 诶这题能高斯消元!那只需要把每个位置的数给设出来就能够列方程了!然后就可以\(O( ...
- Luogu3164 CQOI2014 和谐矩阵 异或高斯消元
传送门 题意:给出$N,M$,试构造一个$N \times M$的非全$0$矩阵,其中所有格子都满足:它和它上下左右四个格子的权值之和为偶数.$N , M \leq 40$ 可以依据题目中的条件列出有 ...
- bzoj 3503: [Cqoi2014]和谐矩阵【高斯消元】
如果确定了第一行,那么可以推出来整个矩阵,矩阵合法的条件是n+1行全是0 所以推出来n+1行和1行的关系,然后用异或高斯消元来解即可 #include<iostream> #include ...
随机推荐
- SDUST 作业10 Problem D 魔方阵
Description 所谓N阶魔方阵,是一个N*N的方阵,其元素由1到N^2组成,且方阵每行每列以及对角线的元素和相等.如三阶魔方阵: 8 1 6 3 5 7 4 9 2 魔方阵的规律如下: ...
- PHP数组操作大全
<?php /** * File: phpstudy : array_test.php * Created by PhpStorm. * User: IhMfLy Pheonix@jtv-070 ...
- 微软必应·英雄会第三届在线编程大赛:几个bing?
发布公司:微软亚太研发集团 有 效 期:2013-12-31至2014-02-01 难 度 等 级: 答 题 时 长:120分钟 编程语言要求:C C++ Java C# 悬赏详情 一等奖 : 价值2 ...
- tomcat 配置文件下载目录
tomcat可提供文件的直接下载.有两种方式. 第1种 放到ROOT 目录下 然后在网址中访问: http://ip:8080/download.zip 便可下载 第2种 希望使用自己的文件路径. 在 ...
- android开发中系统自带语音模块的使用
android开发中系统自带语音模块的使用需求:项目中需要添加语音搜索模块,增加用户体验解决过程:在网上搜到语音搜索例子,参考网上代码,加入到了自己的项目,完成产品要求.这个问题很好解决,网上能找到很 ...
- golang实现ping命令
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a B ...
- FPGA开发心得
创新源于模仿,另一个意思就是,我们需要站在巨人的肩膀上起航. 至芯科技培训注重于“按图施工”,在没有达到这种境界的时候,我们需要有我们自己的思想 我的思想: always 时钟分频 数据接收 上升沿和 ...
- 不再让内容把td撑开
<style type="text/css"> table {width:600px;table-layout:fixed;} td {white-space:nowr ...
- UIAlertControl swift
let alertController = UIAlertController(title: "开始!", message: "游戏就要开始,你准备好了吗?", ...
- 如何在github上fork一个项目来贡献代码以及同步原作者的修改
[-] 如何贡献自己的力量 如何让自己的项目与原作者的项目保持同步 作为一个IT人,通过github进行学习是最快的成长手 段.我们可以浏览别人的优秀代码.但只看不动手还是成长得很慢,因此为别人贡献代 ...