BZOJ3503: [Cqoi2014]和谐矩阵
题解:
如果第一行的数知道了,我们就可以推出其他行的数。
那么如何判断第一行的数的一种填法是否合法呢?很简单,我们递推出m+1行的数,当且仅当这一行都是0时满足题意。
那么,我们就有了一种想法。
直接把m+1行的每个数用x[1..n]表示出来,这一定是个系数只为0/1的式子。然后让这个异或值=0,就可以解异或方程组了。
系数怎么推呢?
for1(i,n)b[][i]=(ll)<<i-;
for2(i,,m+)
for1(j,n)
b[i][j]=b[i-][j]^b[i-][j-]^b[i-][j+]^b[i-][j];
然后解方程就可以了。
代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 50+5
#define maxm 100000+5
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define for4(i,x) for(int i=head[x],y=e[i].go;i;i=e[i].next,y=e[i].go)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,m;
ll a[maxn][maxn],b[maxn][maxn],c[maxn][maxn];
inline void gauss()
{
for1(i,n)
{
int k=i;
while(k<=n&&!a[k][i])k++;
if(k>n)continue;
for2(j,i,n+)swap(a[i][j],a[k][j]);
for2(j,i+,n)if(a[j][i])
for2(k,i,n+)
a[j][k]^=a[i][k];
}
for3(i,n,)
{
c[][i]=a[i][n+];
if(!a[i][i]){c[][i]=;continue;}
for2(j,i+,n)if(a[i][j])c[][i]^=c[][j];
}
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
m=read();n=read();
for1(i,n)b[][i]=(ll)<<i-;
for2(i,,m+)
for1(j,n)
b[i][j]=b[i-][j]^b[i-][j-]^b[i-][j+]^b[i-][j];
for1(i,n)
for1(j,n)
a[i][j]=b[m+][i]>>(j-)&;
gauss();
for2(i,,m)
for1(j,n)
c[i][j]=c[i-][j]^c[i-][j-]^c[i-][j+]^c[i-][j];
for1(i,m){for1(j,n-)printf("%d ",c[i][j]);printf("%d\n",c[i][n]);}
return ;
}
BZOJ3503: [Cqoi2014]和谐矩阵的更多相关文章
- 【高斯消元】BZOJ3503 [Cqoi2014]和谐矩阵
3503: [Cqoi2014]和谐矩阵 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1197 Solved: ...
- bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)
http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...
- BZOJ3503:[CQOI2014]和谐矩阵(高斯消元,bitset)
Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本 身,及他上下左右的4个元素(如果存在). 给定矩阵的行数和列数,请计算并输 ...
- BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )
偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...
- BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元
BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元 题意: 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果 ...
- 3503: [Cqoi2014]和谐矩阵
3503: [Cqoi2014]和谐矩阵 链接 分析: 对于每个点,可以列出一个方程a[i][j]=a[i][j-1]^a[i][j+1]^a[i-1][j]^a[i+1][j],于是可以列出n*m个 ...
- P3164 [CQOI2014]和谐矩阵
P3164 [CQOI2014]和谐矩阵 乱写能AC,暴力踩标程(雾 第一眼 诶这题能暴力枚举2333!!! 第二眼 诶这题能高斯消元!那只需要把每个位置的数给设出来就能够列方程了!然后就可以\(O( ...
- Luogu3164 CQOI2014 和谐矩阵 异或高斯消元
传送门 题意:给出$N,M$,试构造一个$N \times M$的非全$0$矩阵,其中所有格子都满足:它和它上下左右四个格子的权值之和为偶数.$N , M \leq 40$ 可以依据题目中的条件列出有 ...
- bzoj 3503: [Cqoi2014]和谐矩阵【高斯消元】
如果确定了第一行,那么可以推出来整个矩阵,矩阵合法的条件是n+1行全是0 所以推出来n+1行和1行的关系,然后用异或高斯消元来解即可 #include<iostream> #include ...
随机推荐
- Silverlight学习之初始化参数
首先需要在Silverlight的宿主页面添加上initParams,如 <param name="initParams" value="key1=jerry,ke ...
- MongoDb gridfs-ngnix文件存储方案 - 图片
http://www.cnblogs.com/wintersun/p/4622205.html 在各类系统应用服务端开发中,我们经常会遇到文件存储的问题. 常见的磁盘文件系统,DBMS传统文件流存储. ...
- PHP导出excel文件
现在教教你如何导入excel文件: 在我的文件储存里面有一个com文件夹的,将其解压放在ThinkPHP/Library/文件夹里面,然后就是写控制器啦!去调用这个插件: <?php names ...
- C++判断对称三位数素数
题目内容:判断一个数是否为对称三位数素数.所谓“对称”是指一个数,倒过来还是该数.例如,375不是对称数,因为倒过来变成了573. 输入描述:输入数据含有不多于50个的正整数(0<n<23 ...
- 做个伪IE浏览器?!【来自官网】
原文:docwiki.embarcadero.com/RADStudio/Seattle/en/Building_a_VCL_Forms_Web_Browser_Application 选择File ...
- openSUSE13.1 Yast 中所有软件图形化界面无法打开,问题原因: Ruby
因为使用rvm安装了新的Ruby,而openSUSE13.1的YaST又是用Ruby的.....解决方案暂时没有
- 界面控件 - 滚动条ScrollBar
界面是人机交互的门户,对产品至关重要.在界面开发中只有想不到没有做不到的,有好的想法,当然要尝试着做出来.对滚动条的扩展,现在有很多类是的例子. VS2015的代码编辑是非常强大的,其中有一个功能可以 ...
- .NET开源工作流RoadFlow-系统布署及注意事项
非常感谢您在百忙之中抽空来了解RoadFlow,下面我们说一下如果在自己本地搭建环境吧. 1.环境要求 数据库:sqlserver2005以上版本.服务器:IIS6.0以上,或iisexpress.d ...
- perl实现awk的功能
perl -nla -F/\t/ -e"...", 其中-n: while(<>){...}-l: chomp-a: autosplit-F: 与a结合的分隔模式-e: ...
- golang的并发
Golang的并发涉及二个概念: goroutine channel goroutine由关键字go创建. channel由关键字chan定义 channel的理解稍难点, 最简单地, 你把它当成Un ...