题目连接

http://acm.hdu.edu.cn/showproblem.php?pid=3836

Equivalent Sets

Description

To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.
You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
Now you want to know the minimum steps needed to get the problem proved.

Input

The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.
Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.

Output

For each case, output a single integer: the minimum steps needed.

Sample Input

4 0
3 2
1 2
1 3

Sample Output

4
3

题目大意:给你一张有向图要求最少加多少条边时该图变成强连通图。
Tarjan缩点。。

#include<bits/stdc++.h>
using namespace std;
const int N = 20100;
struct Tarjan_scc {
stack<int> s;
bool instack[N];
struct edge { int to, next; }G[N * 3];
int idx, scc, tot, in[N], out[N], dfn[N], low[N], head[N], sccnum[N];
inline void init(int n) {
idx = scc = tot = 0;
while (!s.empty()) s.pop();
for (int i = 0; i < n + 2; i++) {
head[i] = -1;
instack[i] = false;
in[i] = out[i] = dfn[i] = low[i] = sccnum[i] = 0;
}
}
inline void add_edge(int u, int v) {
G[tot].to = v, G[tot].next = head[u], head[u] = tot++;
}
inline void built(int m) {
int u, v;
while (m--) {
scanf("%d %d", &u, &v);
add_edge(u, v);
}
}
inline void tarjan(int u) {
dfn[u] = low[u] = ++idx;
instack[u] = true;
s.push(u);
for (int i = head[u]; ~i; i = G[i].next) {
int &v = G[i].to;
if (!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
} else if (instack[v] && dfn[v] < low[u]) {
low[u] = dfn[v];
}
}
if (dfn[u] == low[u]) {
int v = 0;
scc++;
do {
v = s.top(); s.pop();
instack[v] = false;
sccnum[v] = scc;
} while (u != v);
}
}
inline void solve(int n, int m) {
init(n);
built(m);
for (int i = 1; i <= n; i++) {
if (!dfn[i]) tarjan(i);
}
int x1 = 0, x2 = 0;
for (int u = 1; u <= n; u++) {
for (int i = head[u]; ~i; i = G[i].next) {
int v = G[i].to;
if (sccnum[u] != sccnum[v]) {
in[sccnum[v]]++;
out[sccnum[u]]++;
}
}
}
for (int i = 1; i <= scc; i++) {
if (!in[i]) x1++;
if (!out[i]) x2++;
}
printf("%d\n", 1 == scc ? 0 : max(x1, x2));
}
}go;
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w+", stdout);
#endif
int n, m;
while (~scanf("%d %d", &n, &m)) {
go.solve(n, m);
}
return 0;
}

hdu 3836 Equivalent Sets的更多相关文章

  1. [tarjan] hdu 3836 Equivalent Sets

    主题链接: http://acm.hdu.edu.cn/showproblem.php? pid=3836 Equivalent Sets Time Limit: 12000/4000 MS (Jav ...

  2. hdu 3836 Equivalent Sets trajan缩点

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  3. hdu 3836 Equivalent Sets(强连通分量--加边)

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  4. hdu——3836 Equivalent Sets

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  5. hdu 3836 Equivalent Sets(tarjan+缩点)

    Problem Description To prove two sets A and B are equivalent, we can first prove A is a subset of B, ...

  6. hdu - 3836 Equivalent Sets(强连通)

    http://acm.hdu.edu.cn/showproblem.php?pid=3836 判断至少需要加几条边才能使图变成强连通 把图缩点之后统计入度为0的点和出度为0的点,然后两者中的最大值就是 ...

  7. HDU - 3836 Equivalent Sets (强连通分量+DAG)

    题目大意:给出N个点,M条边.要求你加入最少的边,使得这个图变成强连通分量 解题思路:先找出全部的强连通分量和桥,将强连通分量缩点.桥作为连线,就形成了DAG了 这题被坑了.用了G++交的,结果一直R ...

  8. hdoj 3836 Equivalent Sets【scc&&缩点】【求最少加多少条边使图强连通】

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  9. HUD——T 3836 Equivalent Sets

    http://acm.hdu.edu.cn/showproblem.php?pid=3836 Time Limit: 12000/4000 MS (Java/Others)    Memory Lim ...

随机推荐

  1. Flex 中文字体终极解决方案

    一直以来Flash对中文的支持就不是很好,很多人都发现很多汉字在Flex中无法设置粗体,就是其中一个表现,经过一晚上的折腾,终于突破了这个难题,其实,答案就在Adobe的官方教程里,只能怪自己英文水平 ...

  2. 大陆地区OpenStack项目Core现状(截至2016年1月28日,转载自陈沙克日志)

    陈沙克 经常有朋友问,大陆地区大概有多少位OpenStack项目的Core.这个问题,现在其实不太好回答,如果需要准确统计的话.下面仅仅是一个大概估计,有遗漏的,希望朋友指出,我来补全. 文档修改历史 ...

  3. 多线程(三)GCD

    一.GCD GCD:Grand Central Dispatch,宏大的中央调度!!!是苹果为多核的并行运算提出的解决方案,会自动合理地利用更多的CPU内核(比如双核.四核), GCD的底层依然是用线 ...

  4. spring HibernateValidator 验证 子类不起作用

    spring HibernateValidator 验证 子类不起作用,在要验证的子类前加上@Valid即可. public class UserInfo { private int Id; @Val ...

  5. jqmobi 子菜单 高亮效果

    在jqmobi 中经常用到一个 子菜单 单击某一个选项 希望能高亮:所以我是这样做的1.HTML的页面显示是这样的 <div class="order_subheader01" ...

  6. Aster及其它遥感数据下载地址

    免费下载TM,ETM的网址,速度还行,本人下载过, http://glcfapp.umiacs.umd.edu 还有一个是下载其他数据的,也可以去看看免费下载·遥感数据http://daac.gsfc ...

  7. IE 不兼容的几个js问题及解决方法1

    IE 不兼容的几个js问题及解决方法 1 Table的问题   在动态新增tr或者td时,createElecment() 一般用appendChild();都不生效,解决办法是用新增tbody, 如 ...

  8. windows phone主题切换(换肤)

    之前项目做了个主题切换的功能,最后客户没来得及出第二套界面给放弃了,默哀中... 为了不让它就这样流产了,就放博客共享吧. 首先说明下原理:这个切换是通过重写资源字典里指定的样式,在运行的过程中加载指 ...

  9. 实现支持在Mac OS的最小大化的过渡效果

    实现支持在Mac OS的最小大化的过渡效果,该源码是刚刚在源码天堂那个网站上转载过来的,个人感觉还不错的,大家可以学习一下吧. 源码下载:http://code.662p.com/view/2250. ...

  10. Linux FTP服务器搭建与使用

    一.vsftpd说明 LINUX下实现FTP服务的软件很多,最常见的有vsftpd,Wu-ftpd和Proftp等.Red Hat Enterprise Linux中默认安装的是vsftpd. 访问F ...