在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。

可以有一些比较形象的比喻说法把这个算法讲清楚。比如说食堂的大师傅炒了一份菜,要等分成两份给两个人吃,显然没有必要拿来天平一点一点的精确的去称分量,最简单的办法是先随意的把菜分到两个碗中,然后观察是否一样多,把比较多的那一份取出一点放到另一个碗中,这个过程一直迭代地执行下去,直到大家看不出两个碗所容纳的菜有什么分量上的不同为止。EM算法就是这样,假设我们估计知道A和B两个参数,在开始状态下二者都是未知的,并且知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。可以考虑首先赋予A某种初值,以此得到B的估计值,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止。
EM 算法是 Dempster,Laind,Rubin 于 1977 年提出的求参数极大似然估计的一种方法,它可以从非完整数据集中对参数进行 MLE 估计,是一种非常简单实用的学习算法。这种方法可以广泛地应用于处理缺损数据,割尾数据,带有噪声等所谓的不完全数据(incomplete data)。
假定集合Z = (X,Y)由观测数据 X 和未观测数据Y 组成,X 和Z = (X,Y)分别称为不完整数据和完整数据。假设Z的联合概率密度被参数化地定义为P(X,Y|Θ),其中Θ表示要被估计的参数。Θ的最大似然估计是求不完整数据的对数依然函数L(X;Θ)的最大值而得到的:
L(Θ;X)= log p(X|Θ) = ∫log p(X,Y|Θ)dY ;
EM算法包括两个步骤:由E步和M步组成,它是通过迭代地最大化完整数据的对数似然函数Lc(X;Θ)的期望来最大化不完整数据的对数似然函数,其中:
Lc(X;Θ) =log p(X,Y |Θ) ;
假设在算法第t次迭代后Θ获得的估计记为Θ(t) ,则在(t+1)次迭代时,
E-步:计算完整数据的对数似然函数的期望,记为:
Q(Θ|Θ (t)) = E{Lc(Θ;Z)|X;Θ(t)};
M-步:通过最大化Q(Θ|Θ(t) ) 来获得新的Θ 。
通过交替使用这两个步骤,EM算法逐步改进模型的参数,使参数和训练样本的似然概率逐渐增大,最后终止于一个极大点。直观地理解EM算法,它也可被看作为一个逐次逼近算法:事先并不知道模型的参数,可以随机的选择一套参数或者事先粗略地给定某个初始参数λ0 ,确定出对应于这组参数的最可能的状态,计算每个训练样本的可能结果的概率,在当前的状态下再由样本对参数修正,重新估计参数λ,并在新的参数下重新确定模型的状态,这样,通过多次的迭代,循环直至某个收敛条件满足为止,就可以使得模型的参数逐渐逼近真实参数。
EM算法的主要目的是提供一个简单的迭代算法计算后验密度函数,它的最大优点是简单和稳定,但容易陷入局部最优。
 
 

最大期望算法 Expectation Maximization概念的更多相关文章

  1. EM算法(Expectation Maximization Algorithm)

    EM算法(Expectation Maximization Algorithm) 1. 前言   这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的< ...

  2. 简单理解EM算法Expectation Maximization

    1.EM算法概念 EM 算法,全称 Expectation Maximization Algorithm.期望最大算法是一种迭代算法,用于含有隐变量(Hidden Variable)的概率参数模型的最 ...

  3. EM算法(Expectation Maximization)

    1 极大似然估计     假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成绩的分 ...

  4. EM算法(Expectation Maximization Algorithm)初探

    1. 通过一个简单的例子直观上理解EM的核心思想 0x1: 问题背景 假设现在有两枚硬币Coin_a和Coin_b,随机抛掷后正面朝上/反面朝上的概率分别是 Coin_a:P1:-P1 Coin_b: ...

  5. EM 算法 Expectation Maximization

  6. Expectation Maximization and GMM

    Jensen不等式 Jensen不等式给出了积分的凸函数值必定大于凸函数(convex)的积分值的定理.在凸函数曲线上的任意两点间连接一条线段,那么线段会位于曲线之上,这就是将Jensen不等式应用到 ...

  7. [转]EM算法(Expectation Maximization Algorithm)详解

    https://blog.csdn.net/zhihua_oba/article/details/73776553 EM算法(Expectation Maximization Algorithm)详解 ...

  8. EM(Expectation Maximization)算法

    EM(Expectation Maximization)算法  参考资料: [1]. 从最大似然到EM算法浅解 [2]. 简单的EM算法例子 [3]. EM算法)The EM Algorithm(详尽 ...

  9. MLE极大似然估计和EM最大期望算法

    机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM ...

随机推荐

  1. Apache模块管理

    Apache是一个模块化设计的服务,核心只包含主要功能,扩展功能通过模块实现,不同模块可以被静态的编辑进程序,也可以动态加载. # /usr/local/apache/bin/httpd -M  查看 ...

  2. 计算2的N次方

    总时间限制:  1000ms 内存限制:  65536kB 描述 任意给定一个正整数N(N<=100),计算2的n次方的值. 输入 输入一个正整数N. 输出 输出2的N次方的值. 样例输入 5 ...

  3. WinMain初始化详细过程以及消息循环

    主要内容:详细介绍WinMain函数的初始化过程以及消息循环 1.窗口类定义 通过给窗口类数据结构WNDCLASS赋值完成, 该数据结构中包含窗口类的各种属性 <1>LoadIcon 作用 ...

  4. JAVA导入包

    在package **;下面写入 import java.**.**; 1.使用Scanner工具类来获取用户输入的成绩信息 Scanner类位于java.util包中,使用时需要导入此包 1.1. ...

  5. hdu2647 拓扑序

    题意:年终要给 n 个员工发奖金,每个人的起始金额是888,有些人觉得自己做的比另一个人好所以应该多得一些钱,问最少需要花多少钱,如果不能满足所有员工的要求,输出 -1 拓扑排序,从奖金少的向奖金多的 ...

  6. 越狱Season 1-Episode 20: Tonight

    Season 1, Episode 20: Tonight -Pope: I want him under 24hour surveillance. surveillance: 监视 保证24小时监视 ...

  7. meta name="viewport" 属性详解

    随着高端手机(Andriod,Iphone,Ipod,WinPhone等)的盛行,移动互联应用开发也越来越受到人们的重视,用html5开发移动应用是最好的选择.然而,每一款手机有不同的分辨率,不同屏幕 ...

  8. 渴切-开源中文css框架

    渴切:是国内优秀的开源css框架. 渴切是一个开源中文 (X)HTML/CSS 框架 ,它的目的是减少你的css开发时间.它提供一个可靠的css基础去创建你的项目,能够用于网站的快速设计,通过重设和重 ...

  9. android:versionCode和android:versionName 用途

    本文转载自:http://blog.csdn.net/wh_19910525/article/details/8660416 Android的版本可以在androidmainfest.xml中定义,主 ...

  10. 【转】完美解除Windows7的驱动程序强制签名限制

    原文网址:http://nick.txtcc.com/index.php/nocategory/290 Windows 7很J,很多驱动程序都无法安装,因为Windows 7不像Vista,必须要求所 ...