【BZOJ 2693】jzptab(莫比乌斯+分块)
2693: jzptab
Description
Input
一个正整数T表示数据组数
接下来T行 每行两个正整数 表示N、M
Output
T行 每行一个整数 表示第i组数据的结果
Sample Input
14 5
Sample Output
122HINT
T <= 10000N, M<=10000000

这个把它放入线性筛里面预处理就好了。#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Mod 100000009
#define Maxn 10000010
#define LL long long LL mu[Maxn],pri[Maxn],g[Maxn],h[Maxn],pl;
bool q[Maxn]; LL mymin(LL x,LL y) {return x<y?x:y;} void get_mu(LL mx)
{
pl=;
memset(q,,sizeof(q));
mu[]=;g[]=;
for(LL i=;i<=mx;i++)
{
if(q[i])
{
pri[++pl]=i;
mu[i]=-;
g[i]=+i*mu[i];
}
for(LL j=;j<=pl;j++)
{
if(i*pri[j]>mx) break;
q[i*pri[j]]=;
if(i%pri[j]==) mu[i*pri[j]]=,g[i*pri[j]]=g[i];
else mu[i*pri[j]]=-mu[i],g[i*pri[j]]=(g[i]*g[pri[j]])%Mod;
if(i%pri[j]==) break;
}
}
for(LL i=;i<=mx;i++) g[i]=(i*g[i])%Mod;
h[]=g[];
for(LL i=;i<=mx;i++) h[i]=(h[i-]+g[i])%Mod;
} LL get_sum(LL x,LL y)
{
return ( ( ((x+)*x/)%Mod )*( ((y+)*y/)%Mod ) )%Mod;
} LL get_ans(LL n,LL m)
{
LL ans=; LL sq=(LL)ceil(sqrt((double)m));
for(LL i=;i<=mymin(sq,n);i++)
{
ans=(ans+(g[i]%Mod+Mod)%Mod*get_sum(n/i,m/i) )%Mod;
} for(LL i=sq+;i<=n;)
{
LL x=n/i,y=m/i;
LL r1=n/x+,r2=m/y+;
LL r=mymin(r1,r2);
if(r>m+) r=m+;
// if((((h[r-1]-h[i-1])%Mod+Mod)%Mod)<0) while(1);
ans=( ans+(((h[r-]-h[i-])%Mod+Mod)%Mod)*get_sum(x,y) )%Mod;
i=r;
}
return ans;
} int main()
{
int T;
T=;
scanf("%d",&T);
get_mu(); while(T--)
{
LL n,m,t;
scanf("%lld%lld",&n,&m);
if(n>m) t=n,n=m,m=t; LL ans=get_ans(n,m); printf("%lld\n",ans);
}
return ;
}
[BZOJ 2693]
【BZOJ 2693】jzptab(莫比乌斯+分块)的更多相关文章
- BZOJ 2693: jzptab( 莫比乌斯反演 )
速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
- BZOJ 2693 jzptab ——莫比乌斯反演
同BZOJ 2154 但是需要优化 $ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \fr ...
- BZOJ 2693: jzptab 莫比乌斯反演 + 积性函数 +筛法
Code: #include<bits/stdc++.h> #define ll long long #define M 10001000 #define maxn 10200100 #d ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- bzoj 2693: jzptab 线性筛积性函数
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 444 Solved: 174[Submit][Status][Discus ...
- 【BZOJ】2693: jzptab 莫比乌斯反演
[题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...
- ●BZOJ 2693 jzptab
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2693 题解: 莫比乌斯反演 先看看这个题,BZOJ 2154 Crash的数字表格,本题的升 ...
- Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3241 Solved: 1437[Submit][Status][Discuss ...
随机推荐
- 用ModelSim仿真SDRAM操作
之前写了两篇关于Modelsim仿真的blog,其中模块管脚的命名可能让人觉得有些奇怪,其实不然,之前的两篇内容都是为了仿真SDRAM操作做铺垫的. 由于SDRAM的仿真过程相对比较复杂,也比较繁琐. ...
- i++与++i的区别
i++与++i的意思都是i自身加1,不过这个两个语句却有很大的区别. ++i,就是直接在i上再加1,这个无需多解释. i++会稍微特殊些,他会在下次执行语句,再遇到i时,才会在i身上加1. 打个比方, ...
- Unity3D 之3D游戏入门Hello world(一)
这几天开始玩Unity3D 有关3D的内容了,去年开始玩过一段时间的2D制作,不过因为年初找工作,所以放了一段时间, 现在再捡起来发现忘的已经差不多了,只能再从头开始,所以就从3D开始算了.下面是3D ...
- 首页TAB页的技术选择与功能实现
一般的选择是用viewpager,这个有开源库.不过因为要引入开源库,所以有时候显得比较大. 下面这段代码是用在一个BaseActivity上面的,下面继承的Activity直接使用该方法,就可以完成 ...
- Android Animation 动画属性
在 Android 中, Animation 动画效果的实现可以通过两种方式进行实现: 一种是 tweened animation 渐变动画,另一种是 frame by frame animation ...
- Ajax异步的回调函数执行了多遍
问题: 在做下拉滚动加载时(类似于qq空间下拉加载),数据向下滚动一次,就会加载一次,即append一下,跟踪js后,发现回调函数执行了多次,导致append将上次的append结果append上了, ...
- iOS支付宝集成步骤;王刚韧的技术博客
- html-----009
</head> <!-- 通过使用框架,你可以在同一个浏览器窗口中显示不止一个页面. <p> 垂直框架</p> 本例演示:如何使用三份不同的文档制作一个垂直框 ...
- LigerUI API
参数列表 参数名 类型 描述 默认值 title String 表格标题 null width String|Int 宽度值,支持百分比 'auto' height String|Int 高度值,支持 ...
- 销毁session
session运行在服务器是单用户,每个session都有一个唯一的sessionid 用法:session.setAttribute("userName", "张三丰& ...
