【Bzoj 3295】 动态逆序对(树套树|CDQ分治)
【题意】
每次删除一个数,然后问删除前逆序对数。
【分析】
没有AC不开心。。
我的树状数组套字母树,应该是爆空间的,空间复杂度O(nlogn^2)啊。。哭。。
然后就没有然后了,别人家的树套树是树状数组套平衡树,O(nlogn)的啊。。
别人家的CDQ分治更屌。。我垃圾咯。
只是存个代码:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 200010
#define Maxd 31 int a[Maxn],wr[Maxn];
int n,m; struct node
{
int son[],cnt;
}tr[Maxn**];int tot; void upd(int x)
{
tr[x].son[]=tr[x].son[]=;
tr[x].cnt=;
} void add(int now,int y,int c)
{
for(int i=Maxd;i>=;i--)
{
int ind=y>>i-;
y=y%(<<i-);
if(!tr[now].son[ind])
{
tr[now].son[ind]=++tot;
upd(tot);
}
now=tr[now].son[ind];
tr[now].cnt+=c;
}
} int ffind(int now,int y)
{
int ans=;
for(int i=Maxd;i>=;i--)
{
int ind=y>>i-;
y=y%(<<i-);
if(ind==)
{
ans+=tr[tr[now].son[]].cnt;
now=tr[now].son[];
}
else now=tr[now].son[];
}
return ans;
} int sm[Maxn];
void change(int x,int y,int c)
{
for(int i=x;i<=n;i+=i&(-i))
add(i,y,c),sm[i]+=c; } int ad;
int query(int x,int y)
{
ad=;
int ans=;
for(int i=x;i>=;i-=i&(-i))
ad+=sm[i],ans+=ffind(i,y);
return ans;
} int main()
{
int ans=;
scanf("%d%d",&n,&m);
memset(sm,,sizeof(sm));
for(int i=;i<=n;i++) {scanf("%d",&a[i]);wr[a[i]]=i;}
upd();
tot=n;
for(int i=;i<=n;i++)
{
ans+=query(i-,a[i]);
change(i,a[i],);
}
int sum=n;
for(int i=;i<=m;i++)
{
int x;
scanf("%d",&x);
printf("%d\n",ans);
sum--;
change(wr[x],x,-);
int now=-query(n,x);
now+=*query(wr[x]-,x);
ans-=sum+now-ad;
}
return ; }
2016-11-08 16:42:22
学了cdq分治回来更新耶!!
用CDQ分治AC啦哈哈~~
CDQ分治比树套树省空间多了,空间是O(n)的,时间还是O(nlogn^2)
然后,简单说一下?
我自己也不是很懂,刚会。。
Solve(l,r)为求出区间l~r的答案。
然后只有编号小于它的对他有影响。
然后二分 [l,mid]和[mid+1,r],,考虑完[l,mid]对[mid+1,r]的影响之后,那两个区间就可以分开搞了。(就是分治)
问题变成快速求[l,mid]对[mid+1,r]的影响。
本题中,我们可以看成是一个三元组i->(xi,yi,zi),然后ans[i]=x<xi y<yi z>zi或者x<xi y>yi z<zi 的数量。。
x这一维是时间戳,y是编号,z是值(想一想就知道他为什么表示逆序对啦!!!)
那么,只有x<xi的对xi有影响,把x这一维作为编号。
快速求出,[l,mid]对[mid+1,r]中y<yi z>zi或者y>yi z<zi 的数量
可以用y排序,树状数组维护,求和,就知道y和z的逆序对数了。。
n元组,满足x>xi,y>yi....的个数的东东 。。【这东西叫n维偏序???好像是CDQ分治的经典题哦!!
啊。。。WA了好久,竟然是没有开LL!!!!好傻啊、、
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 200010
#define LL long long int a[Maxn],b[Maxn];
LL f[Maxn];
int n,m; int c[Maxn];
bool vis[Maxn]; struct node
{
int x,y,id;
}t[Maxn];int tl; int mymax(int x,int y) {return x>y?x:y;}
bool cmp(node x,node y) {return x.x>y.x;}
bool cmp2(node x,node y) {return x.x<y.x;} void add(int x,int y)
{
for(int i=x;i<=n;i+=i&(-i))
c[i]+=y;
} int query(int x)
{
int ans=;
for(int i=x;i>=;i-=i&(-i))
ans+=c[i];
return ans;
} void solve2(int l,int r)
{
tl=;
for(int i=l;i<=r;i++)
{
t[++tl].x=a[i];
t[tl].y=b[i];
t[tl].id=i;
}
sort(t+,t++tl,cmp);
for(int i=;i<=tl;i++)
{
if(vis[t[i].id]) f[t[i].id]+=query(t[i].y);
else add(t[i].y,);
}
for(int i=;i<=tl;i++) if(!vis[t[i].id]) add(t[i].y,-);
sort(t+,t++tl,cmp2);
for(int i=;i<=tl;i++)
{
if(vis[t[i].id]) f[t[i].id]+=query(n-t[i].y+);
else add(n-t[i].y+,);
}
for(int i=;i<=tl;i++) if(!vis[t[i].id]) add(n-t[i].y+,-);
} void solve(int l,int r)
{
if(l==r) return;
int mid=(l+r)>>;
for(int i=l;i<=mid;i++) vis[i]=;
for(int i=mid+;i<=r;i++) vis[i]=;
solve2(l,r);
solve(l,mid);solve(mid+,r);
} int wr[Maxn],d[Maxn];
void init()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
wr[x]=i;
}
for(int i=n;i>n-m;i--)
{
int x;
scanf("%d",&x);
a[i]=x;
b[i]=wr[x];
wr[x]=;
}
int now=n-m+;
for(int i=;i<=n;i++) if(wr[i]!=) a[--now]=i,b[now]=wr[i];
memset(c,,sizeof(c));
memset(f,,sizeof(f));
} int main()
{
init();
solve(,n);
LL ans=;
for(int i=;i<=n;i++) ans+=f[i];
for(int i=n;i>n-m;i--)
{
printf("%lld\n",ans);
ans-=f[i];
}
return ;
}
代码还不是很长啦,主要是CDQ分治空间真的要小很多。。
所以才知道,为什么大神说树套树粉转路人了ORZ。。。
2016-11-08 20:14:57
【Bzoj 3295】 动态逆序对(树套树|CDQ分治)的更多相关文章
- BZOJ 3295 动态逆序对 | CDQ分治
BZOJ 3295 动态逆序对 这道题和三维偏序很类似.某个元素加入后产生的贡献 = time更小.pos更小.val更大的元素个数 + time更小.pos更大.val更小的元素个数. 分别用类似C ...
- bzoj 3295 动态逆序对 (三维偏序,CDQ+树状数组)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3295 思路: 可以将这道题看成倒着插入,这样就可以转化成求逆序对数,用CDQ分治降维,正反用 ...
- BZOJ - 3295 动态逆序对 (树状数组套treap)
题目链接 思路和bzoj2141差不多,不过这道题的数据更强一些,线段树套treapT了,树状数组套treap卡过~~ #include<bits/stdc++.h> using name ...
- BZOJ 3295:[Cqoi2011]动态逆序对(三维偏序 CDQ分治+树状数组)
http://www.lydsy.com/JudgeOnline/problem.php?id=3295 题意:简单明了. 思路:终于好像有点明白CDQ分治处理三维偏序了.把删除操作看作是插入操作,那 ...
- bzoj 3295 动态逆序对 CDQ分支
容易看出ans[i]=ans[i-1]-q[i],q[i]为删去第i个数减少的逆序对. 先用树状数组算出最开始的逆序对,预处理出每个数前边比它大的和后边比它小的,就求出了q[i]的初始值. 设b[i] ...
- BZOJ 3295 动态逆序对
调了好久.... 转化成三维偏序,cdq处理. 好像比较快? #include<iostream> #include<cstdio> #include<cstring&g ...
- 【BZOJ3295】动态逆序对(线段树,树状数组)
[BZOJ3295]动态逆序对(线段树,树状数组) 题面 Description 对于序列A,它的逆序对数定义为满足iAj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的 ...
- [bzoj3295][Cqoi2011]动态逆序对_主席树
动态逆序对 bzoj-3295 Cqoi-2011 题目大意:题目链接. 注释:略. 想法:直接建立主席树. 由于是一个一个删除,所以我们先拿建立好的root[n]的权值线段树先把总逆序对求出来,接着 ...
- bzoj3295 洛谷P3157、1393 动态逆序对——树套树
题目:bzoj3295 https://www.lydsy.com/JudgeOnline/problem.php?id=3295 洛谷 P3157(同一道题) https://www.luogu.o ...
- [BZOJ 3295] [luogu 3157] [CQOI2011]动态逆序对(树状数组套权值线段树)
[BZOJ 3295] [luogu 3157] [CQOI2011] 动态逆序对 (树状数组套权值线段树) 题面 给出一个长度为n的排列,每次操作删除一个数,求每次操作前排列逆序对的个数 分析 每次 ...
随机推荐
- pthread
pthread是UNIX操作系统中创建和控制线程的一系列API,通过了解这些API,可以更加清晰的理解线程究竟是什么. 调用pthread的API首先要包含<pthread.h>这一头文件 ...
- Java read()和readLine()的区别
1.read() 功能:读取单个字符的个数,如果已经读完的话会返回-1 (其范围从 0 到 65535 ) 例子如下: byte[] buf = new byte[1024]; int len; wh ...
- Magento Block设计分析(深入分析)
Magento中Block是一个很重要的组件,它在Block中充当非常重要的角色,下面我们来分析一下Magento中Block是怎样设计的,我们应该怎样使用这个重要的角色. 1.Magento Blo ...
- 20160427Struts2--入门1
参考资料来自传智播客:非原创,只是做个笔记: 一.Struts2简介: Struts2是在WebWork2基础发展而来的.和struts1一样, Struts2也属于MVC框架.不过有一点大家需要注意 ...
- 20160329javaweb之JSP -cookie入门
一.什么是会话? •会话可简单理解为:用户开一个浏览器,点击多个超链接,访问服务器多个web资源,然后关闭浏览器,整个过程称之为一个会话. 会话过程中要解决的一些问题? •每个用户在使用浏览器与服务器 ...
- 保留关键字 (Transact-SQL)
https://msdn.microsoft.com/zh-cn/library/ms189822(v=sql.120).aspx Microsoft SQL Server 将保留关键字用于定义.操作 ...
- SQL Server 表水平分区
什么是表分区 一般情况下,我们建立数据库表时,表数据都存放在一个文件里. 但是如果是分区表的话,表数据就会按照你指定的规则分放到不同的文件里,把一个大的数据文件拆分为多个小文件,还可以把这些小文件放在 ...
- 转载:在Visual Studio 2013中管理中国特色的社会主义Windows Azure
原文链接: http://www.pstips.net/get-azurechinacloud-settings.html 谷歌被豪迈地放弃了中国市场,微软仍旧在中国市场摸爬滚打,跪着挣钱.其中私人定 ...
- 时间处理总结(三)javascript与WCF
1.WCF提交时间时,若需接受DateTime需转换为"\/Date(928120800000+0800)\/"这种格式 var DateToJson = function (js ...
- iOS svn版本回退 cornerstone
http://blog.csdn.net/x32sky/article/details/46866899 IOS开发中,SVN如何恢复到某一个版本(以Cornerstone为例) Cornerst ...