Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8795   Accepted: 3692

Description

On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is played on an ice game board on which a square mesh is marked. They use only a single stone. The purpose of the game is to lead the stone from the start to the goal with the minimum number of moves.

Fig. 1 shows an example of a game board. Some squares may be occupied with blocks. There are two special squares namely the start and the goal, which are not occupied with blocks. (These two squares are distinct.) Once the stone begins to move, it will proceed until it hits a block. In order to bring the stone to the goal, you may have to stop the stone by hitting it against a block, and throw again.


Fig. 1: Example of board (S: start, G: goal)

The movement of the stone obeys the following rules:

  • At the beginning, the stone stands still at the start square.
  • The movements of the stone are restricted to x and y directions. Diagonal moves are prohibited.
  • When the stone stands still, you can make it moving by throwing it. You may throw it to any direction unless it is blocked immediately(Fig. 2(a)).
  • Once thrown, the stone keeps moving to the same direction until one of the following occurs:
    • The stone hits a block (Fig. 2(b), (c)).

      • The stone stops at the square next to the block it hit.
      • The block disappears.
    • The stone gets out of the board.
      • The game ends in failure.
    • The stone reaches the goal square.
      • The stone stops there and the game ends in success.
  • You cannot throw the stone more than 10 times in a game. If the stone does not reach the goal in 10 moves, the game ends in failure.


Fig. 2: Stone movements

Under the rules, we would like to know whether the stone at the start can reach the goal and, if yes, the minimum number of moves required.

With the initial configuration shown in Fig. 1, 4 moves are required to bring the stone from the start to the goal. The route is shown in Fig. 3(a). Notice when the stone reaches the goal, the board configuration has changed as in Fig. 3(b).


Fig. 3: The solution for Fig. D-1 and the final board configuration

Input

The input is a sequence of datasets. The end of the input is indicated by a line containing two zeros separated by a space. The number of datasets never exceeds 100.

Each dataset is formatted as follows.

the width(=w) and the height(=h) of the board 
First row of the board 
... 
h-th row of the board

The width and the height of the board satisfy: 2 <= w <= 20, 1 <= h <= 20.

Each line consists of w decimal numbers delimited by a space. The number describes the status of the corresponding square.

0 vacant square
1 block
2 start position
3 goal position

The dataset for Fig. D-1 is as follows:

6 6 
1 0 0 2 1 0 
1 1 0 0 0 0 
0 0 0 0 0 3 
0 0 0 0 0 0 
1 0 0 0 0 1 
0 1 1 1 1 1

Output

For each dataset, print a line having a decimal integer indicating the minimum number of moves along a route from the start to the goal. If there are no such routes, print -1 instead. Each line should not have any character other than this number.

Sample Input

2 1
3 2
6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1
6 1
1 1 2 1 1 3
6 1
1 0 2 1 1 3
12 1
2 0 1 1 1 1 1 1 1 1 1 3
13 1
2 0 1 1 1 1 1 1 1 1 1 1 3
0 0

Sample Output

1
4
-1
4
10
-1


题意:给出一个w*h的矩阵,其中0代表可走区域,1代表石头,2代表起点(也属于可走区域),3代表终点(不可走区域),问冰壶从起点到终点最少走几步,但是这里的一步不是一个方格,
而是每改变一次方向步数加1,因为冰壶移动的原则是:一旦选定一个方向就一直往前走,直到遇到石头或到达终点停止,遇到石头时冰壶改变方向继续直走;当冰壶遇到石头时,石头要由1变为0,
递归之后别忘了再把这个状态改回来;注意如果冰壶只走了一步就遇到石头的话这个方向是不能走的。 最后找出所有的步数之后比较出一个最短的就是了; //可以从起点开始枚举方向和步数,冰壶一下可以走几步到达石头;
 #include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; int w,h,map[][];
int ans;
int dir[][] = {{,},{,-},{-,},{,}};
int minstep; int dfs(int sx,int sy,int step)
{
if(step > )
return step;
for(int i = ; i < ; i++)//枚举4个方向
{
for(int k = ; k < ; k++)//枚举走的步数
{
int tx = sx+dir[i][]*k;
int ty = sy+dir[i][]*k;
if(tx >= && tx <= h && ty >= && ty <= w)
{
if(map[tx][ty] == )
return step+;//走到终点,返回
else if(map[tx][ty] == )
{
if(k == )
break;//如果只走一步遇到墙,不符合,跳出循环,走下一个方向
int x = sx+dir[i][]*(k-);
int y = sy+dir[i][]*(k-);//找到遇到墙之前一格的静止状态;
map[tx][ty] = ;//该墙标记为0;
minstep = min(minstep,dfs(x,y,step+));//从该静止状态起继续递归,并记录较小步数
map[tx][ty] = ;//将之前标记为0的墙重新修改回来;
break;//break不能忘记,因为按第i方向遇到第一个墙以后就改变方向了,不能继续直走;
}
}
else
break;
}
}
return minstep;
}
int main()
{
int sx,sy;
while(~scanf("%d %d",&w,&h))
{
if(w == && h == )
break;
for(int i = ; i <= h; i++)
for(int j = ; j <= w; j++)
{
scanf("%d",&map[i][j]);
if(map[i][j] == )
{
sx = i;
sy = j;
map[i][j] = ;
}
}
minstep = ;
int ans = dfs(sx,sy,);
if(ans > )
printf("-1\n");
else printf("%d\n",ans); }
return ;
}
//也可以从起点一个格一个格的走,当下一个格不是石头的时候按原来的方向继续走,当下一个格是石头的时候再枚举四个方向步数加1继续走;
 #include<stdio.h>
#include<string.h>
int dir[][] = {{,},{-,},{,},{,-}};
int map[][];
int w,h,sx,sy,ex,ey;
int ans;
void dfs(int x, int y,int d,int step)
{
if(step > || map[x][y] == -)
return;
if(x == ex && y == ey)
{
if(ans == - || ans > step)
ans = step;
return;
}
if(map[x+dir[d][]][y+dir[d][]] != )
{
dfs(x+dir[d][],y+dir[d][],d,step);
return;
}
if(map[x+dir[d][]][y+dir[d][]] == )
{
map[x+dir[d][]][y+dir[d][]] = ;
for(int i = ; i < ; i++)
{
int xx = x+dir[i][];
int yy = y+dir[i][];
if(map[xx][yy] != )
dfs(xx,yy,i,step+);
}
map[x+dir[d][]][y+dir[d][]] = ;
}
}
int main()
{
while(~scanf("%d %d",&w,&h))
{
if(w == && h == )
break;
memset(map,-,sizeof(map));
for(int i = ; i <= h; i++)
{
for(int j = ; j <= w; j++)
{
scanf("%d",&map[i][j]);
if(map[i][j] == )
{
sx = i;
sy = j;
}
if(map[i][j] == )
{
ex = i;
ey = j;
}
}
}
ans = -;
for(int i = ; i < ; i++)
{
int tx = sx+dir[i][];
int ty = sy+dir[i][];
if(map[tx][ty] != - && map[tx][ty] != )
dfs(tx,ty,i,);
}
printf("%d\n",ans);
}
return ; }



Curling 2.0(dfs)的更多相关文章

  1. POJ3009——Curling 2.0(DFS)

    Curling 2.0 DescriptionOn Planet MM-21, after their Olympic games this year, curling is getting popu ...

  2. 【POJ】3009 Curling 2.0 ——DFS

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11432   Accepted: 4831 Desc ...

  3. Curling 2.0(dfs回溯)

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15567   Accepted: 6434 Desc ...

  4. POJ3009 Curling 2.0(DFS)

    迷宫问题求最短路. 略有不同的是假设不碰到石头的话会沿着一个方向一直前进,出界就算输了.碰到石头,前方石头会消失,冰壶停在原地. 把这个当作状态的转移. DFS能够求出其最小操作数. #include ...

  5. POJ 3009 Curling 2.0(DFS + 模拟)

    题目链接:http://poj.org/problem?id=3009 题意: 题目很复杂,直接抽象化解释了.给你一个w * h的矩形格子,其中有包含一个数字“2”和一个数字“3”,剩下的格子由“0” ...

  6. poj 3009 Curling 2.0( dfs )

    题目:http://poj.org/problem?id=3009 参考博客:http://www.cnblogs.com/LK1994/ #include <iostream> #inc ...

  7. poj 3009 Curling 2.0 (dfs )

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11879   Accepted: 5028 Desc ...

  8. POJ-3009 Curling 2.0 (DFS)

    Description On Planet MM-21, after their Olympic games this year, curling is getting popular. But th ...

  9. poj3009 Curling 2.0 (DFS按直线算步骤)

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14563   Accepted: 6080 Desc ...

随机推荐

  1. java中的mmap实现--转

    什么是mmap mmap对于c程序员很熟悉,对于java程序员有点陌生.简而言之,将文件直接映射到用户态的内存地址,这样对文件的操作不再是write/read,而是直接对内存地址的操作. 在c中提供了 ...

  2. CSS盒子模型小剖析

    前段时间刚刚从C/S过度到B/S,提到B/S就不能说CSS,而说起CSS又不能落下盒子模型.在CSS诞生的时候就有了盒子模型的概念,网页中大部分的元素都能构成一个盒子模型,.盒子模型无非就是描述的元素 ...

  3. titlebar和actionbar上的按钮设置

    ---恢复内容开始--- Actionbar加按钮: 在res文件夹下新建menu文件夹(如果你没有),然后添加一个XML文件 <?xml version="1.0" enc ...

  4. 10.29 afternoon

    [问题描述] 祖玛是一款曾经风靡全球的游戏,其玩法是:在一条轨道上初始排列着若干个彩色珠子,其中任意三个相邻的珠子不会完全同色.此后,你可以发射珠子到轨道上并加入原有序列中.一旦有三个或更多同色的珠子 ...

  5. 获取服务器端ip

    System.Web.HttpContext.Current.Request.ServerVariables["REMOTE_ADDR"]

  6. Rouh set 入门知识1(基础定义篇)

    粗糙集理论是继概率论.模糊集.证据论后又一处理不完整性和不确定性的数学工具,建立在分类机制的基础上.无需提供问题所处理的数据集合之外的任何先验信息条件.并且能有效分析不精确.不一致.不完整等各种不完备 ...

  7. TOKEN的保存与验证

    Token主要为了防止非本页数据的提交,防止重复提交. /** * * 保存TOKEN信息 * */ public void saveToken() { //此处生成md5串 string md5 = ...

  8. vim备注

    ① 用户path生效 在~/.bashrc中修改path,在~/.profile中source bashrc ② secureCRT着色方案 底色RGB:43 43 43 前景色RGB:221 221 ...

  9. 330. Patching Array--Avota

    问题描述: Given a sorted positive integer array nums and an integer n, add/patch elements to the array s ...

  10. 最优雅的C++跟lua交互.

    我先来吐槽一下我们这个项目. 我是做手机游戏的, cocos2dx引擎, lua编码. 这本来是一件很欢快的事情, 因为不用接触C++. C++写久了的人写lua, 就会感觉任督二脉被打通了, 代码写 ...