Description

小A是一个名副其实的狂热的回合制游戏玩家。在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏。    游戏的规则是这样的,首先给定一个数F,然后游戏系统会产生T组游戏。每一组游戏包含N堆石子,小A和他的对手轮流操作。每次操作时,操作者先选定一个不小于2的正整数M (M是操作者自行选定的,而且每次操作时可不一样),然后将任意一堆数量不小于F的石子分成M堆,并且满足这M堆石子中石子数最多的一堆至多比石子数最少的一堆多1(即分的尽量平均,事实上按照这样的分石子万法,选定M和一堆石子后,它分出来的状态是固定的)。当一个玩家不能操作的时候,也就是当每一堆石子的数量都严格小于F时,他就输掉。(补充:先手从N堆石子中选择一堆数量不小于F的石子分成M堆后,此时共有N+M-1)堆石子,接下来小A从这N+M-1堆石子中选择一堆数量不小于F的石子,依此类推。
    小A从小就是个有风度的男生,他邀请他的对手作为先手。小A现在想要知道,面对给定的一组游戏,而且他的对手也和他一样聪明绝顶的话,究竟谁能够获得胜利?

Input

输入第一行包含两个正整数T和F,分别表示游戏组数与给定的数。
    接下来T行,每行第一个数N表示该组游戏初始状态下有多少堆石子。之后N个正整数,表示这N堆石子分别有多少个。

Output

输出一行,包含T个用空格隔开的0或1的数,其中0代表此时小A(后手)会胜利,而1代表小A的对手(先手)会胜利。

Sample Input

4 3
1 1
1 2
1 3
1 5

Sample Output

0 0 1 1

HINT

对于100%的数据,T<100,N<100,F<100000,每堆石子数量<100000。

以上所有数均为正整数。

 
题意就不解释了,题解见http://blog.csdn.net/gromah/article/details/27326991
code:
 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 100005
using namespace std;
char ch;
int n,T,tmp,f,x,sg[maxn];
bool bo[maxn*],ok,first=;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
void calc(int n){
if (n<f){sg[n]=;return;}
for (int i=;i<=n;i=n/(n/i)+)
for (int j=i;j<=i+&&j<=n;j++){
if (((n%j)&)&&sg[n/j+]==-) calc(n/j+);
if (((j-n%j)&)&&sg[n/j]==-) calc(n/j);
}
for (int i=;i<=n;i=n/(n/i)+)
for (int j=i,t;j<=i+&&j<=n;j++){
t=;
if ((n%j)&) t^=sg[n/j+];
if ((j-n%j)&) t^=sg[n/j];
bo[t]=;
}
for (int i=;;i++) if (!bo[i]){sg[n]=i;break;}
for (int i=;i<=n;i=n/(n/i)+)
for (int j=i,t;j<=i+&&j<=n;j++){
t=;
if ((n%j)&) t^=sg[n/j+];
if ((j-n%j)&) t^=sg[n/j];
bo[t]=;
}
}
int main(){
memset(sg,-,sizeof(sg));
for (read(T),read(f);T;T--){
read(n),tmp=;
for (int i=;i<=n;i++){
read(x);
if (sg[x]==-) calc(x);
tmp^=sg[x];
}
if (first) first=;
else putchar(' ');
printf("%d",(tmp!=));
}
puts("");
return ;
}

bzoj3576: [Hnoi2014]江南乐的更多相关文章

  1. bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理

    3576: [Hnoi2014]江南乐 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1929  Solved: 686[Submit][Status ...

  2. 【BZOJ3576】江南乐(博弈论)

    [BZOJ3576]江南乐(博弈论) 题面 BZOJ 洛谷 题解 无论一堆石头怎么拆分,都并不能改变它是一个\(Multi-SG\)的事实. 既然每一组的\(F\)都是固定的,那么我们预处理所有的可能 ...

  3. 洛谷 P3235 [HNOI2014]江南乐 解题报告

    P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...

  4. 【bzoj3576】 Hnoi2014—江南乐

    http://www.lydsy.com/JudgeOnline/problem.php?id=3576 (题目链接) 题意 给出一个数$F$,然后$n$堆石子,每次操作可以把一堆不少于$F$的石子分 ...

  5. 【bzoj3576】[Hnoi2014]江南乐 博弈论+SG定理+数学

    题目描述 两人进行 $T$ 轮游戏,给定参数 $F$ ,每轮给出 $N$ 堆石子,先手和后手轮流选择石子数大于等于 $F$ 的一堆,将其分成任意(大于1)堆,使得这些堆中石子数最多的和最少的相差不超过 ...

  6. 【bzoj3576】[Hnoi2014]江南乐 数论分块+博弈论

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F ...

  7. [HNOI2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  8. 洛谷P3235 [HNOI2014]江南乐(Multi-SG)

    题目描述 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F,然后游戏系统 ...

  9. luogu P3235 [HNOI2014]江南乐

    传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...

随机推荐

  1. HDU 4638 Group 【树状数组,分块乱搞(莫队算法?)】

    根据题目意思,很容易得出,一个区间里面连续的段数即为最少的group数. 题解上面给的是用树状数组维护的. 询问一个区间的时候,可以一个一个的向里面添加,只需要判断a[i]-1 和 a[i]+1是否已 ...

  2. DCL双检查锁机制实现的线程安全的单例模式

    public class MyObject { private volatile static MyObject myObject; private MyObject(){} public stati ...

  3. Linux用户与用户组的详解

    1,用户和用户组文件   在linux中,用户帐号,用户密码,用户组信息和用户组密码均是存放在不同的配置文件中的.   在linux系统中,所创建的用户帐号和其相关信息(密码除外)均是存放在/etc/ ...

  4. html打印表格每页都有的表头和打印分页

    本文转载:http://www.cnblogs.com/RitchieChen/archive/2008/07/30/1256829.html 在做项目的时候碰到的.用户要求,页面呈现太长时,打印的时 ...

  5. leetcode第一刷_Interleaving String

    有关这样的字符串的题真是层出不穷啊,并且他们都有这样一个特点,就是递归的思路如此简单,但一定超时! 这个时候,dp就朝我们缓缓走来.递归超,dp搞!这道题的状态转移方程还是比較好写的,用ispart[ ...

  6. slidingmenu+fragment实现经常使用的側滑效果(包含Fragment状态的保存)

    一.需求 关于fragment的问题,一直想写一篇博客了.应该当初自己也是对这玩意一点都不熟悉到如今也大概知道个日常的使用的地步. 一个側滑的导航栏,内有4个条目.每个选项点击进入相应的界面,每个界面 ...

  7. android抓包工具

    下载 http://gdown.baidu.com/data/wisegame/2158469c63492e89/Tcpzhuabao_2.apk

  8. jboss7 Java API for RESTful Web Services (JAX-RS) 官方文档

    原文:https://docs.jboss.org/author/display/AS7/Java+API+for+RESTful+Web+Services+(JAX-RS) Content Tuto ...

  9. 关于 java.util.concurrent 您不知道的 5 件事--转

    第 1 部分 http://www.ibm.com/developerworks/cn/java/j-5things4.html Concurrent Collections 是 Java™ 5 的巨 ...

  10. Android音频开发之——如何播放一帧音频

    本文重点关注如何在Android平台上播放一帧音频数据.阅读本文之前,建议先读一下<Android音频开发(1):基础知识>,因为音频开发过程中,经常要涉及到这些基础知识,掌握了这些重要的 ...