Ural 1046 Geometrical Dreams(解方程+计算几何)
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046
参考博客:http://hi.baidu.com/cloudygoose/item/21fee021a5db348d9d63d17b
参考资料(向量的旋转):http://www.cnblogs.com/woodfish1988/archive/2007/09/10/888439.html
题目大意:就是已知n个点,n个角。点Mi可以与多边形Ai和Ai+1构成等腰三角形,顶角为ang[i]. 现在要你求出这个多边形的n的顶点。
算法思路:刚开始想几何性质,怎么也想不出来一个好的思路。没办法,网搜才知道要用解方程的方法。蛋疼的是没写过,别人的代码有是懂非懂的。慢慢琢磨才发现其实现方程求解的思路。先看看那个参考博客的思路吧。
我只是大致翻译一下他的思想: 我们知道: Ai+1 = Rotate(Ai-Mi,ang[i]) + Mi; (画画图就知道) 整理下就是:Ai+1 = P1' * Ai + P2';
而由A1递推来 : Ai = P1 * A1 + P2; 我们编程时要不断更新这个P1和P2;
具体看代码:
代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std; const double eps = 1e-;
const double PI = acos(-1.0);
const double INF = 1000000000000000.000; struct Point{
double x,y;
Point(double x=, double y=) : x(x),y(y){ } //构造函数
};
typedef Point Vector; struct Circle{
Point c;
double r;
Circle() {}
Circle(Point c,double r): c(c),r(r) {}
};
Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (double p,Vector A){return Vector(A.x*p,A.y*p);}
Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){
return a.x < b.x ||( a.x == b.x && a.y < b.y);
} int dcmp(double x){
if(fabs(x) < eps) return ;
else return x < ? - : ;
}
bool operator == (const Point& a, const Point& b){
return dcmp(a.x - b.x) == && dcmp(a.y - b.y) == ;
} ///向量(x,y)的极角用atan2(y,x);
inline double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; }
inline double Length(Vector A) { return sqrt(Dot(A,A)); }
inline double Angle(Vector A, Vector B) { return acos(Dot(A,B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y * B.x; } Vector vecunit(Vector v){ return v / Length(v);} //单位向量
double torad(double deg) { return deg/ * PI; }
Vector Rotate(Vector A, double rad) { return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); } /*************************************分 割 线*****************************************/ int main()
{
//freopen("E:\\acm\\input.txt","r",stdin); const int maxn = ;
Point M[maxn],P1,P2; double ang[maxn];
int n; cin>>n;
for(int i=; i<=n; i++)
{
scanf("%lf %lf",&M[i].x,&M[i].y);
}
for(int i=; i<=n; i++)
{
scanf("%lf",&ang[i]);
ang[i] = torad(ang[i]);
} P1 = Point(,);
P2 = Point(,); for(int i=; i<=n; i++)
{
P1 = Rotate(P1,ang[i]);
P2 = Rotate(P2,ang[i]);
P2 = P2 + M[i] - Rotate(M[i],ang[i]);
} P1.x -= ;
P2.x = -P2.x;
P2.y = -P2.y; Point ans; //求ans时,把P1,P2看成复平面中的点,即P1表示为P1.x+P2.y*i; 然后ans = P2/P1,用虚数就可求出。
ans.x = (P1.x*P2.x+P1.y*P2.y)/(P1.x*P1.x+P1.y*P1.y);
ans.y = (-P1.y*P2.x+P1.x*P2.y)/(P1.x*P1.x+P1.y*P1.y); for(int i=; i<=n; i++)
{
printf("%.2lf %.2lf\n",ans.x,ans.y);
ans = M[i] + Rotate(ans-M[i],ang[i]);
}
}
Ural 1046 Geometrical Dreams(解方程+计算几何)的更多相关文章
- vijos P1915 解方程 加强版
背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...
- HDU 4793 Collision --解方程
题意: 给一个圆盘,圆心为(0,0),半径为Rm, 然后给一个圆形区域,圆心同此圆盘,半径为R(R>Rm),一枚硬币(圆形),圆心为(x,y),半径为r,一定在圆形区域外面,速度向量为(vx,v ...
- codevs3732==洛谷 解方程P2312 解方程
P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录 题目描述 已知多项式方程: a ...
- [NOIP2014]解方程
3732 解方程 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 输入描述 Input Descrip ...
- bzoj 3751: [NOIP2014]解方程 同余系枚举
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...
- 2017广东工业大学程序设计竞赛决赛 题解&源码(A,数学解方程,B,贪心博弈,C,递归,D,水,E,贪心,面试题,F,贪心,枚举,LCA,G,dp,记忆化搜索,H,思维题)
心得: 这比赛真的是不要不要的,pending了一下午,也不知道对错,直接做过去就是了,也没有管太多! Problem A: 两只老虎 Description 来,我们先来放松下,听听儿歌,一起“唱” ...
- 5.5Python数据处理篇之Sympy系列(五)---解方程
目录 目录 前言 (一)求解多元一次方程-solve() 1.说明: 2.源代码: 3.输出: (二)解线性方程组-linsolve() 1.说明: 2.源代码: 3.输出: (三)解非线性方程组-n ...
- python 解方程
[怪毛匠子=整理] SymPy 库 安装 sudo pip install sympy x = Symbol('x') 解方程 solve([2 * x - y - 3, 3 * x + y - 7] ...
- python 解方程 和 python 距离公式实现
解方程参考:https://zhuanlan.zhihu.com/p/24893371 缺点太慢,最后还是自己算了 距离公式参考:https://www.cnblogs.com/denny402/p/ ...
随机推荐
- IOS LocationManager定位国内偏移,火星坐标(GCJ-02)解决方法
转载自:http://blog.csdn.net/swingpyzf/article/details/16972351 纠偏也可参考:http://www.2cto.com/kf/201310/253 ...
- GCD的一点理解
大家都知道GCD 有两种队列:一种是串行队列,一种是并发队列.什么是串行队列?串行队列就是队列中的代码块一个一个按顺序执行,每当上一个代码块执行结束后下一个代码块才会执行.打个比方,如果队列是一些首尾 ...
- C++专题 - Qt是什么
Qt是一个1991年由奇趣科技开发的跨平台C++图形用户界面应用程序开发框架.它既可以开发GUI程式,也可用于开发非GUI程式,比如控制台工具和服务器.Qt是面向对象的框架,使用特殊的代码生成扩展(称 ...
- QT UI 使一个QWidget里面的元素自动填充满本QWidget
使一个QWidget里面的元素自动填充满本QWidget: 对象查看器,右键点击本QWidget,选择"布局",为此QWidget增加一个布局. 如果该QWidget只有一个对象, ...
- [学习笔记]设计模式之Proxy
为方便读者,本文已添加至索引: 设计模式 学习笔记索引 写在前面 “魔镜啊魔镜,谁是这个世界上最美丽的人?” 每到晚上,女王都会问魔镜相同的问题(见Decorator模式).这是她还曾身为女巫时留下的 ...
- 【elasticsearch】(1)centos7 使用yum安装elasticsearch 2.X
前言 elasticsearch(下面称为ES)是一个基于Lucene的搜索服务器(By 百度百科:查看).所以他需要java的环境即jdk,这里提供懒人一键安装方式 # yum install ja ...
- Island of Survival 概率
#include <cstdio> #include <iostream> #include <cstring> #include <algorithm> ...
- js 默认的参数、可变的参数、变量作用域
可以通过arguments对象来实现可变的参数 在函数代码中,使用特殊对象 arguments,开发者无需明确指出参数名,就能访问它们. arguments是一个数组对象,可以通过下标来实别参数的位置 ...
- Web动效研究与实践
随着CSS3和HTML5的发展,越来越多狂拽炫酷叼炸天的动效在网页设计上遍地开花,根据最新的浏览器市场份额报告,IE6的份额已经降到了5.21%,这简直是一个喜大普奔的消息,做动效可以完全不care低 ...
- phpMyAdmin下载与安装
Part1 phpMyAdmin下载 浏览器输入网址 http://www.phpmyadmin.net 下载即可 我的下载是这样的 Part2 phpMyAdmin安装 解压下载的压缩包到apach ...