系统调用是操作系统提供给用户(应用程序)的一组接口,每个系统调用都有一个对应的系统调用函数来完成相应的工作。用户通过这个接口向操作系统申请服务,如访问硬件,管理进程等等。但是因为用户程序运行在用户空间,而系统调用运行在内核空间,因此用户程序不能直接调用系统调用函数,我们经常看到的比如fork、open、write 等等函数实际上并不是真正的系统调用函数,他们都只是c库,在这些函数里将执行一个软中断 swi 指令,产生一个软中断,使CPU 陷入内核态,接着在内核中进行一系列的判断,判断出是哪个系统调用,再转到真正的系统调用函数,完成相应的功能。下面举一个简单的例子说明从用户态调用一个“系统调用”,到内核处理的整个执行流程。

  用户态程序如下:

void pk()

  {

    __asm__(

    "ldr  r7  =365 \n"

    "swi \n"

    :

    :

    :

    );

  }

  int main()

  {

      pk();

    retrun 0;

  }

  上面的代码中,我自己实现了一个新的系统调用,具体怎么做,后面再具体描述。pk()事实上就可以类比于平时我们在用户程序里调用的 open() 等函数,这个函数只做了一件简单的事:将系统调用号传给 r7 ,,然后产生一软中断。接着CPU陷入内核

  内核态:

  CPU相应这个软中断以后,PC指针会到相应的中断向量表中取指,中断向量表在内核代码中:arch/arm/kernel/entry-armv.S  中定义

.LCvswi:
 .word vector_swi

.globl __stubs_end
__stubs_end:

.equ stubs_offset, __vectors_start + 0x200 - __stubs_start

.globl __vectors_start
__vectors_start:
 ARM( swi SYS_ERROR0 )
 THUMB( svc #0  )
 THUMB( nop   )
 W(b) vector_und + stubs_offset
 W(ldr) pc, .LCvswi + stubs_offset  #响应中断后pc指向这里
 W(b) vector_pabt + stubs_offset
 W(b) vector_dabt + stubs_offset
 W(b) vector_addrexcptn + stubs_offset
 W(b) vector_irq + stubs_offset
 W(b) vector_fiq + stubs_offset

.globl __vectors_end
__vectors_end:

当pc取到如上的指令后,会跳到 vector_swi 这个标号,这个标号在arch/arm/kernel/entry-commen.S 中定义。

.align 5
ENTRY(vector_swi)
 sub sp, sp, #S_FRAME_SIZE
 stmia sp, {r0 - r12}   @ Calling r0 - r12
 ARM( add r8, sp, #S_PC  )
 ARM( stmdb r8, {sp, lr}^  ) @ Calling sp, lr
 THUMB( mov r8, sp   )
 THUMB( store_user_sp_lr r8, r10, S_SP ) @ calling sp, lr
 mrs r8, spsr   @ called from non-FIQ mode, so ok.
 str lr, [sp, #S_PC]   @ Save calling PC
 str r8, [sp, #S_PSR]  @ Save CPSR
 str r0, [sp, #S_OLD_R0]  @ Save OLD_R0
 zero_fp

/*
  * Get the system call number.    #取出系统调用号
  */

#if defined(CONFIG_OABI_COMPAT)

/*
  * If we have CONFIG_OABI_COMPAT then we need to look at the swi
  * value to determine if it is an EABI or an old ABI call.
  */
#ifdef CONFIG_ARM_THUMB
 tst r8, #PSR_T_BIT
 movne r10, #0    @ no thumb OABI emulation
 ldreq r10, [lr, #-4]   @ get SWI instruction
#else
 ldr r10, [lr, #-4]   @ get SWI instruction
  A710( and ip, r10, #0x0f000000  @ check for SWI  )
  A710( teq ip, #0x0f000000      )
  A710( bne .Larm710bug      )
#endif
#ifdef CONFIG_CPU_ENDIAN_BE8
 rev r10, r10   @ little endian instruction
#endif

#elif defined(CONFIG_AEABI)

/*
  * Pure EABI user space always put syscall number into scno (r7).
  */
  A710( ldr ip, [lr, #-4]   @ get SWI instruction )
  A710( and ip, ip, #0x0f000000  @ check for SWI  )
  A710( teq ip, #0x0f000000      )
  A710( bne .Larm710bug      )

#elif defined(CONFIG_ARM_THUMB)

/* Legacy ABI only, possibly thumb mode. */
 tst r8, #PSR_T_BIT   @ this is SPSR from save_user_regs
 addne scno, r7, #__NR_SYSCALL_BASE @ put OS number in
 ldreq scno, [lr, #-4]

#else

/* Legacy ABI only. */
 ldr scno, [lr, #-4]   @ get SWI instruction
  A710( and ip, scno, #0x0f000000  @ check for SWI  )
  A710( teq ip, #0x0f000000      )
  A710( bne .Larm710bug      )

#endif

#ifdef CONFIG_ALIGNMENT_TRAP
 ldr ip, __cr_alignment
 ldr ip, [ip]
 mcr p15, 0, ip, c1, c0  @ update control register
#endif
 enable_irq

get_thread_info tsk

adr tbl, sys_call_table  @ load syscall table pointer  #获取系统调用表的基地址
 ldr ip, [tsk, #TI_FLAGS]  @ check for syscall tracing

#if defined(CONFIG_OABI_COMPAT)
 /*
  * If the swi argument is zero, this is an EABI call and we do nothing.
  *
  * If this is an old ABI call, get the syscall number into scno and
  * get the old ABI syscall table address.
  */
 bics r10, r10, #0xff000000
 eorne scno, r10, #__NR_OABI_SYSCALL_BASE
 ldrne tbl, =sys_oabi_call_table
#elif !defined(CONFIG_AEABI)
 bic scno, scno, #0xff000000  @ mask off SWI op-code
 eor scno, scno, #__NR_SYSCALL_BASE @ check OS number
#endif

stmdb sp!, {r4, r5}   @ push fifth and sixth args
 tst ip, #_TIF_SYSCALL_TRACE  @ are we tracing syscalls?
 bne __sys_trace

cmp scno, #NR_syscalls  @ check upper syscall limit
 adr lr, BSYM(ret_fast_syscall) @ return address
 ldrcc pc, [tbl, scno, lsl #2]  @ call sys_* routine  #跳到系统调用函数

add r1, sp, #S_OFF
2: mov why, #0    @ no longer a real syscall
 cmp scno, #(__ARM_NR_BASE - __NR_SYSCALL_BASE)
 eor r0, scno, #__NR_SYSCALL_BASE @ put OS number back
 bcs arm_syscall 
 b sys_ni_syscall   @ not private func

从上面可以看出,当CPU从中断向量表转到vector_swi 之后,完成了几件事情:1.取出系统调用号 2.根据系统调用号取出系统调用函数在系统调用表的基地址,得到一个系统调用函数的函数指针 3. 根据系统调用表的基地址和系统调用号,得到这个系统调用表里的项,每一个表项都是一个函数指针,把这个函数指针赋给PC , 则实现了跳转到系统调用函数。

系统调用表定义在:arch/arm/kernel/Calls.S

* This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  This file is included thrice in entry-common.S
 */
/* 0 */  CALL(sys_restart_syscall)
  CALL(sys_exit)
  CALL(sys_fork_wrapper)
  CALL(sys_read)
  CALL(sys_write)
/* 5 */  CALL(sys_open)
  CALL(sys_close)
  CALL(sys_ni_syscall)  /* was sys_waitpid */
  CALL(sys_creat)
  CALL(sys_link)
/* 10 */ CALL(sys_unlink)
  CALL(sys_execve_wrapper)
  CALL(sys_chdir)
  CALL(OBSOLETE(sys_time)) /* used by libc4 */
  CALL(sys_mknod)
/* 15 */ CALL(sys_chmod)
  CALL(sys_lchown16)
  CALL(sys_ni_syscall)  /* was sys_break */
  CALL(sys_ni_syscall)  /* was sys_stat */
  CALL(sys_lseek)
/* 20 */ CALL(sys_getpid)
  CALL(sys_mount)
  CALL(OBSOLETE(sys_oldumount)) /* used by libc4 */
  CALL(sys_setuid16)
  CALL(sys_getuid16)
/* 25 */ CALL(OBSOLETE(sys_stime))
  CALL(sys_ptrace)
  CALL(OBSOLETE(sys_alarm)) /* used by libc4 */
  CALL(sys_ni_syscall)  /* was sys_fstat */
  CALL(sys_pause)
/* 30 */ CALL(OBSOLETE(sys_utime)) /* used by libc4 */
  CALL(sys_ni_syscall)  /* was sys_stty */
  CALL(sys_ni_syscall)  /* was sys_getty */
  CALL(sys_access)
  CALL(sys_nice)
/* 35 */ CALL(sys_ni_syscall)  /* was sys_ftime */
  CALL(sys_sync)
  CALL(sys_kill)
  CALL(sys_rename)
  CALL(sys_mkdir)
/* 40 */ CALL(sys_rmdir)
  CALL(sys_dup)
  CALL(sys_pipe)
  CALL(sys_times)
  CALL(sys_ni_syscall)  /* was sys_prof */
/* 45 */ CALL(sys_brk)
  CALL(sys_setgid16)
  CALL(sys_getgid16)
  CALL(sys_ni_syscall)  /* was sys_signal */
  CALL(sys_geteuid16)
/* 50 */ CALL(sys_getegid16)
  CALL(sys_acct)
  CALL(sys_umount)
  CALL(sys_ni_syscall)  /* was sys_lock */
  CALL(sys_ioctl)
/* 55 */ CALL(sys_fcntl)
  .......

CALL(sys_eventfd2)
  CALL(sys_epoll_create1)
  CALL(sys_dup3)
  CALL(sys_pipe2)
/* 360 */ CALL(sys_inotify_init1)
  CALL(sys_preadv)
  CALL(sys_pwritev)
  CALL(sys_rt_tgsigqueueinfo)
  CALL(sys_perf_event_open)
  CALL(sys_pk)     #我自己加的系统调用

了解了一个系统调用的执行过程就可以试着添加一个自己的系统调用了:

内核:

1. 在内核代码实现一个系统调用函数,即 sys_xxx()函数,如我在 kernel/printk.c 中添加了

void pk()

{

  printk(KERN_WARNING"this is my first sys call !\n");

}

2. 添加系统调用号 在 arch/arm/include/asm/Unistd.h

添加  #define __NR_pk    (__NR_SYSCALL_BASE+365)

3. 添加调用函数指针列表 在arch/arm/keenel/Calls.S

添加 CALL(sys_pk)

4.  声明自己的系统调用函数 在include/linux/syscall.h

添加asmlinkage long sys_pk()

用户空间:

void pk()

  {

    __asm__(

    "ldr  r7  =365 \n"

    "swi \n"

    :

    :

    :

    );

  }

  int main()

  {

      pk();

    retrun 0;

  }

完成上面的编写以后就可以编译内核和应用程序了。

将生成的文件在arm开发板上运行可以打印出: This is my first sys call!

说明我添加的系统调用可以使用。

至此,描述系统调用的实现机制和添加一个新的系统调用就完成了。

arm Linux 系统调用过程的更多相关文章

  1. ARM Linux系统调用的原理

    转载自:http://blog.csdn.net/hongjiujing/article/details/6831192 ARM Linux系统调用的原理 操作系统为在用户态运行的进程与硬件设备进行交 ...

  2. Arm Linux系统调用流程详细解析

    Linux系统通过向内核发出系统调用(system call)实现了用户态进程和硬件设备之间的大部分接口. 系统调用是操作系统提供的服务,用户程序通过各种系统调用,来引用内核提供的各种服务,系统调用的 ...

  3. Linux系统调用过程

    1 系统调用的作用 系统调用是操作系统提供给用户(应用程序)的一组接口,每个系统调用都有一个对应的系统调用函数来完成相应的工作.用户通过这个接口向操作系统申请服务,如访问硬件,管理进程等等. 应用程序 ...

  4. Linux 系统调用过程详细分析

    内核版本:Linux-4.19 操作系统通过系统调用为运行于其上的进程提供服务. 那么,在应用程序内,调用一个系统调用的流程是怎样的呢? 我们以一个假设的系统调用 xyz() 为例,介绍一次系统调用的 ...

  5. ARM linux解析之压缩内核zImage的启动过程

    ARM linux解析之压缩内核zImage的启动过程 semilog@163.com 首先,我们要知道在zImage的生成过程中,是把arch/arm/boot/compressed/head.s  ...

  6. ARM Linux驱动篇 学习温度传感器ds18b20的驱动编写过程

    ARM Linux驱动篇 学习温度传感器ds18b20的驱动编写过程 原文地址:http://www.cnblogs.com/NickQ/p/9026545.html 一.开发板与ds18b20的入门 ...

  7. 加入新的linux系统调用

    上一篇详解了linux系统调用的原理,接下来依据上一篇的原理简介怎样创建新的linux系统调用 向内核中加入新的系统调用,须要运行3个步骤: 1. 加入新的内核函数 2. 更新头文件unistd.h ...

  8. [Linux]系统调用理解(1)

    本文是Linux系统调用专栏系列文章的第一篇,对Linux系统调用的定义.基本原理.使用方法和注意事项大概作了一个介绍,以便读者对Linux系统调用建立一个大致的印象. 什么是系统调用? Linux内 ...

  9. 构建 ARM Linux 4.7.3 嵌入式开发环境 —— U-BOOT 引导 Kernel

    经过若干天的反复测试,搜索.终于成功利用 Qemu 在 u-boot 下引导 ARM Linux 4.7.3 内核.如下详细解释整个构建过程. 准备环境 运行环境:Ubuntu 16.04 需要的虚拟 ...

随机推荐

  1. 在Windows Server 2012 上安装Exchange 2013 服务器

    前文:http://www.cnblogs.com/Liangw/archive/2011/09/19/2559944.html 安装准备: 1.加入一个存在的域(?如何建立一个域) 2.登录Wind ...

  2. Java中的包

    包:定义包用package关键字. 1:对类文件进行分类管理. 2:给类文件提供多层名称空间. 如果生成的包不在当前目录下,需要最好执行classpath,将包所在父目录定义到classpath变量中 ...

  3. 深入hibernate的三种状态【转载】

    这篇文章写得很好,举了很多例子. http://www.cnblogs.com/xiaoluo501395377/p/3380270.html

  4. IDEA新建SpringMVC项目报错解决办法

    网页运行的错误: HTTP Status 500 - Handler processing failed; nested exception is java.lang.NoClassDefFoundE ...

  5. Python中逗号作用的实例分析

    逗号在类型转化中的使用 主要是元组的转换 例如: >>> a=11>>> b=(a)>>> b11>>> b=(a,)>& ...

  6. hdu 1015 dfs

    Problem Description === Op tech briefing, 2002/11/02 06:42 CST === "The item is locked in a Kle ...

  7. UVA 753 - A Plug for UNIX(网络流)

      A Plug for UNIX  You are in charge of setting up the press room for the inaugural meeting of the U ...

  8. SQL语法集锦三:合并列值与分拆列值

    本文转载http://www.cnblogs.com/lxblog/archive/2012/09/29/2708724.html 在SQL中分拆列值和合并列值老生常谈了,从网上搜刮了一下并记录下来, ...

  9. 常见的浏览器Hack技巧总结(转)

    如果你经常需要做前端页面,那么你一定多多少少需要解决页面的浏览器兼容问题.而浏览器兼容问题大部分也集中在对IE系列的兼容.这里就总结一下对IE系列的CSS Hack,记录一下,方便以后查阅. IE H ...

  10. 关于禁止ViewPager预加载问题【转】

    转自:http://blog.csdn.net/qq_21898059/article/details/51453938#comments 我最近上班又遇到一个小难题了,就是如题所述:ViewPage ...