Apriori算法实例----Weka,R, Using Weka in my javacode
学习数据挖掘工具中,下面使用4种工具来对同一个数据集进行研究。
数据描述:下面这些数据是15个同学选修课程情况,在课程大纲中共有10门课程供学生选择,下面给出具体的选课情况,以ARFF数据文件保存,名称为TestStudenti.arff。我使用Apriori算法期望挖掘出学生选课的关联规则。
@relation test_studenti
@attribute Arbori_binari_de_cautare {TRUE, FALSE}
@attribute Arbori_optimali {TRUE, FALSE}
@attribute Arbori_echilibrati_in_inaltime {TRUE, FALSE}
@attribute Arbori_Splay {TRUE, FALSE}
@attribute Arbori_rosu_negru {TRUE, FALSE}
@attribute Arbori_2_3 {TRUE, FALSE}
@attribute Arbori_B {TRUE, FALSE}
@attribute Arbori_TRIE {TRUE, FALSE}
@attribute Sortare_topologica {TRUE, FALSE}
@attribute Algoritmul_Dijkstra {TRUE, FALSE}
@data
TRUE,TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,TRUE,FALSE,FALSE
TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,FALSE,TRUE,FALSE,FALSE
FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,TRUE,FALSE,TRUE
FALSE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE
TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE
TRUE,FALSE,TRUE,FALSE,FALSE,TRUE,TRUE,TRUE,FALSE,FALSE
FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE
TRUE,FALSE,TRUE,TRUE,TRUE,FALSE,TRUE,TRUE,TRUE,FALSE
FALSE,TRUE,TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,FALSE
TRUE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE
FALSE,FALSE,TRUE,FALSE,TRUE,FALSE,FALSE,TRUE,TRUE,TRUE
TRUE,FALSE,FALSE,TRUE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE
FALSE,TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE
TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,FALSE,FALSE
TRUE,TRUE,FALSE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,FALSE
(一) Weka 使用实例
在Apriori算法中,设置minSupprot=50%, 最小置信度 minimum confidence 也设置为50%。Weka配置路径为 Explore-》Openfile(TestStudenti.arff)->Associate 点击配置参数信息
在算法完成之后,我们得到以下结果:
Best rules found:
1. Sortare_topologica=FALSE 13 ==> Arbori_TRIE=TRUE 13 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
2. Arbori_rosu_negru=TRUE 11 ==> Arbori_TRIE=TRUE 11 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
3. Arbori_optimali=TRUE 10 ==> Arbori_TRIE=TRUE 10 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
4. Arbori_optimali=TRUE 10 ==> Sortare_topologica=FALSE 10 <conf:(1)> lift:(1.15) lev:(0.09) [1] conv:(1.33)
5. Arbori_echilibrati_in_inaltime=TRUE 10 ==> Arbori_TRIE=TRUE 10 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
6. Arbori_optimali=TRUE Sortare_topologica=FALSE 10 ==> Arbori_TRIE=TRUE 10 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
7. Arbori_optimali=TRUE Arbori_TRIE=TRUE 10 ==> Sortare_topologica=FALSE 10 <conf:(1)> lift:(1.15) lev:(0.09) [1] conv:(1.33)
8. Arbori_optimali=TRUE 10 ==> Arbori_TRIE=TRUE Sortare_topologica=FALSE 10 <conf:(1)> lift:(1.15) lev:(0.09) [1] conv:(1.33)
9. Arbori_binari_de_cautare=TRUE 9 ==> Arbori_TRIE=TRUE 9 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
10. Arbori_B=FALSE 9 ==> Arbori_TRIE=TRUE 9 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
11. Arbori_rosu_negru=TRUE Sortare_topologica=FALSE 9 ==> Arbori_TRIE=TRUE 9 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
12. Arbori_TRIE=TRUE 15 ==> Sortare_topologica=FALSE 13 <conf:(0.87)> lift:(1) lev:(0) [0] conv:(0.67)
13. Arbori_rosu_negru=TRUE 11 ==> Sortare_topologica=FALSE 9 <conf:(0.82)> lift:(0.94) lev:(-0.04) [0] conv:(0.49)
14. Arbori_rosu_negru=TRUE Arbori_TRIE=TRUE 11 ==> Sortare_topologica=FALSE 9 <conf:(0.82)> lift:(0.94) lev:(-0.04) [0] conv:(0.49)
15. Arbori_rosu_negru=TRUE 11 ==> Arbori_TRIE=TRUE Sortare_topologica=FALSE 9 <conf:(0.82)> lift:(0.94) lev:(-0.04) [0] conv:(0.49)
16. Sortare_topologica=FALSE 13 ==> Arbori_optimali=TRUE 10 <conf:(0.77)> lift:(1.15) lev:(0.09) [1] conv:(1.08)
17. Arbori_TRIE=TRUE Sortare_topologica=FALSE 13 ==> Arbori_optimali=TRUE 10 <conf:(0.77)> lift:(1.15) lev:(0.09) [1] conv:(1.08)
18. Sortare_topologica=FALSE 13 ==> Arbori_optimali=TRUE Arbori_TRIE=TRUE 10 <conf:(0.77)> lift:(1.15) lev:(0.09) [1] conv:(1.08)
19. Arbori_TRIE=TRUE 15 ==> Arbori_rosu_negru=TRUE 11 <conf:(0.73)> lift:(1) lev:(0) [0] conv:(0.8)
20. Sortare_topologica=FALSE 13 ==> Arbori_rosu_negru=TRUE 9 <conf:(0.69)> lift:(0.94) lev:(-0.04) [0] conv:(0.69)
分析第一条结果,我们可以得出关联规则: 如果一个学生不参加Sortare topologica 课程,那么他的一个趋向是肯定不会参加 Arbori TRIE课程。这条关联规则的置信度是100%,是非常可信的。
(二) Using Weka in my Javacode
展示Java代码,运行程序可以得到和上面一样的结果
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import weka.associations.Apriori;
import weka.core.Instances;
public class Main{
public static void main(String[] args) {
Instances data = null;
try {
BufferedReader reader = new BufferedReader( new FileReader( "TestStudenti.arff" ) );
data = new Instances(reader);
reader.close();
data.setClassIndex(data.numAttributes() - 1);
}
catch ( IOException e ) {
e.printStackTrace();
}
double deltaValue = 0.05;
double lowerBoundMinSupportValue = 0.1;
double minMetricValue = 0.5;
int numRulesValue = 20;
double upperBoundMinSupportValue = 1.0;
String resultapriori;
Apriori apriori = new Apriori();
apriori.setDelta(deltaValue);
apriori.setLowerBoundMinSupport(lowerBoundMinSupportValue);
apriori.setNumRules(numRulesValue);
apriori.setUpperBoundMinSupport(upperBoundMinSupportValue);
apriori.setMinMetric(minMetricValue);
try{
apriori.buildAssociations( data );
}
catch ( Exception e ) {
e.printStackTrace();
}
resultapriori = apriori.toString();
System.out.println(resultapriori);
}
}
(三) Using Weka in R
程序很简单,仅仅三行代码搞定。
library(RWeka);
data <- read.arff("D:/test.studenti.arff");
Apriori(data,control=Weka_control(N=20,T =0,C =0.5,D =0.05, U= 1.0,M =0.5, S =-1.0, c =-1))
运行结果:
Apriori
=======
Minimum support: 0.6 (9 instances)
Minimum metric <confidence>: 0.5
Number of cycles performed: 8
Generated sets of large itemsets:
Size of set of large itemsets L(1): 7
Size of set of large itemsets L(2): 8
Size of set of large itemsets L(3): 2
Best rules found:
1. Sortare_topologica=FALSE 13 ==> Arbori_TRIE=TRUE 13 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
2. Arbori_rosu_negru=TRUE 11 ==> Arbori_TRIE=TRUE 11 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
3. Arbori_optimali=TRUE 10 ==> Arbori_TRIE=TRUE 10 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
4. Arbori_optimali=TRUE 10 ==> Sortare_topologica=FALSE 10 <conf:(1)> lift:(1.15) lev:(0.09) [1] conv:(1.33)
5. Arbori_echilibrati_in_inaltime=TRUE 10 ==> Arbori_TRIE=TRUE 10 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
6. Arbori_optimali=TRUE Sortare_topologica=FALSE 10 ==> Arbori_TRIE=TRUE 10 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
7. Arbori_optimali=TRUE Arbori_TRIE=TRUE 10 ==> Sortare_topologica=FALSE 10 <conf:(1)> lift:(1.15) lev:(0.09) [1] conv:(1.33)
8. Arbori_optimali=TRUE 10 ==> Arbori_TRIE=TRUE Sortare_topologica=FALSE 10 <conf:(1)> lift:(1.15) lev:(0.09) [1] conv:(1.33)
9. Arbori_binari_de_cautare=TRUE 9 ==> Arbori_TRIE=TRUE 9 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
10. Arbori_B=FALSE 9 ==> Arbori_TRIE=TRUE 9 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
11. Arbori_rosu_negru=TRUE Sortare_topologica=FALSE 9 ==> Arbori_TRIE=TRUE 9 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
12. Arbori_TRIE=TRUE 15 ==> Sortare_topologica=FALSE 13 <conf:(0.87)> lift:(1) lev:(0) [0] conv:(0.67)
13. Arbori_rosu_negru=TRUE 11 ==> Sortare_topologica=FALSE 9 <conf:(0.82)> lift:(0.94) lev:(-0.04) [0] conv:(0.49)
14. Arbori_rosu_negru=TRUE Arbori_TRIE=TRUE 11 ==> Sortare_topologica=FALSE 9 <conf:(0.82)> lift:(0.94) lev:(-0.04) [0] conv:(0.49)
15. Arbori_rosu_negru=TRUE 11 ==> Arbori_TRIE=TRUE Sortare_topologica=FALSE 9 <conf:(0.82)> lift:(0.94) lev:(-0.04) [0] conv:(0.49)
16. Sortare_topologica=FALSE 13 ==> Arbori_optimali=TRUE 10 <conf:(0.77)> lift:(1.15) lev:(0.09) [1] conv:(1.08)
17. Arbori_TRIE=TRUE Sortare_topologica=FALSE 13 ==> Arbori_optimali=TRUE 10 <conf:(0.77)> lift:(1.15) lev:(0.09) [1] conv:(1.08)
18. Sortare_topologica=FALSE 13 ==> Arbori_optimali=TRUE Arbori_TRIE=TRUE 10 <conf:(0.77)> lift:(1.15) lev:(0.09) [1] conv:(1.08)
19. Arbori_TRIE=TRUE 15 ==> Arbori_rosu_negru=TRUE 11 <conf:(0.73)> lift:(1) lev:(0) [0] conv:(0.8)
20. Sortare_topologica=FALSE 13 ==> Arbori_rosu_negru=TRUE 9 <conf:(0.69)> lift:(0.94) lev:(-0.04) [0] conv:(0.69)
Apriori算法实例----Weka,R, Using Weka in my javacode的更多相关文章
- Apriori算法实例
Apriori算法与实例 R. Agrawal 和 R. Srikant于1994年在文献[2]中提出了Apriori算法,该算法的描述如下: 下面是一个具体的例子,最开始数据库里有4条交易,{A.C ...
- Apriori算法例子
1 Apriori介绍 Apriori算法使用频繁项集的先验知识,使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集.首先,通过扫描事务(交易)记录,找出所有的频繁1项集,该集合记做L1,然 ...
- Apriori算法第二篇----详细分析和代码实现
1 Apriori介绍 Apriori算法使用频繁项集的先验知识,使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集.首先,通过扫描事务(交易)记录,找出所有的频繁1项集,该集合记做L1,然 ...
- HAWQ + MADlib 玩转数据挖掘之(七)——关联规则方法之Apriori算法
一.关联规则简介 关联规则挖掘的目标是发现数据项集之间的关联关系,是数据挖据中一个重要的课题.关联规则最初是针对购物篮分析(Market Basket Analysis)问题提出的.假设超市经理想更多 ...
- 数据挖掘:关联规则的apriori算法在weka的源码分析
相对于机器学习,关联规则的apriori算法更偏向于数据挖掘. 1) 测试文档中调用weka的关联规则apriori算法,如下 try { File file = new File("F:\ ...
- 玩转大数据:深入浅出大数据挖掘技术(Apriori算法、Tanagra工具、决策树)
一.本课程是怎么样的一门课程(全面介绍) 1.1.课程的背景 “大数据”作为时下最火热的IT行业的词汇,随之而来的数据仓库.数据分析.数据挖掘等等围绕大数据的商业价值的利用逐渐成为 ...
- #研发解决方案#基于Apriori算法的Nginx+Lua+ELK异常流量拦截方案
郑昀 基于杨海波的设计文档 创建于2015/8/13 最后更新于2015/8/25 关键词:异常流量.rate limiting.Nginx.Apriori.频繁项集.先验算法.Lua.ELK 本文档 ...
- 频繁模式挖掘apriori算法介绍及Java实现
频繁模式是频繁地出如今数据集中的模式(如项集.子序列或者子结构).比如.频繁地同一时候出如今交易数据集中的商品(如牛奶和面包)的集合是频繁项集. 一些基本概念 支持度:support(A=>B) ...
- Apriori算法实现
Apriori算法原理:http://blog.csdn.net/kingzone_2008/article/details/8183768 import java.util.HashMap; imp ...
随机推荐
- python学习_应用pickle模块封装和拆封数据对象
学习文件数据处理的时候了解到有pickle模块,查找官方文档学习了一些需要用到的pickle内容. 封装是一个将Python数据对象转化为字节流的过程,拆封是封装的逆操作,将字节文件或字节对象中的字节 ...
- Kinetic使用注意点--animation
new Animation(func, layers) 参数: func:每一帧都会调用一次此函数.此函数接收一个包含四个元素的参数对象,时间单位均为毫秒. { timeDiff:"上一帧和 ...
- <四> SQL存储过程
存储过程的定义: create procedure procedurename @param1 nvarchar(30) as select * from tablename where name = ...
- javascript 闭包暴露句柄和命名冲突的解决方案
暴露 最近在琢磨前端Js开源项目的东西,然后就一直好奇他们是怎么句柄暴露出来的,特整理一下两种方法. 将对象悬挂到window下面. 不使用var进行变量声明.下面上代码: (function(win ...
- 异步IO模型和Overlapped结构
.NET中的 Overlapped 类 异步IO模型和Overlapped结构(http://blog.itpub.net/25897606/viewspace-705867/) 数据结构 OVERL ...
- Centos安装gnome主菜单编辑器无
首选项---主菜单-- 即是alacarte.. centos ===安装 alacarte.noarch 0:0.12.4-1.el6 即可.
- .bat批处理脚本让cmd命令行提示符cd到工作目录 (转)
打开cmd,检查命令行提示符所在的默认位置(目录),进入该目录用notepad++创建一个文件,输入 @echo offrem 这个符号表示该行是注释.rem 进入f盘,需要先切换盘符,成功后才能进入 ...
- BZOJ 3956 Count 解题报告
好点对的个数是\(O(n)\)的,而且我们可以 \(O(n)\) 地求出所有好点对. 我们把这些点对以右端点为关键字从小到大排序,再弄个扫描线,每次把右端点在扫描线上的点对的左端点加入线段树,于是我们 ...
- [HDOJ - 5282] Senior's String 【DP】
题目链接:BZOJ - 5282 题目分析 LCS 就是用经典的 O(n^2) DP 解决,f[i][j] 表示 x 串前 i 个字符与 y 串前 j 个字符的 LCS 长度. f[i][j] = m ...
- Fiddler对安卓应用手机抓包图文教程
http://www.cr173.com/html/37625_1.html 做开发需要抓取手机app的http/https的数据包,想看APP发出的http请求和响应是什么,这就需要抓包了,这可以得 ...