题解-[国家集训队]Crash的数字表格 / JZPTAB
题解-[国家集训队]Crash的数字表格 / JZPTAB
前置知识:
莫比乌斯反演 </>
单组测试数据,给定 \(n,m\) ,求
\[\sum\limits_{i=1}^n\sum\limits_{j=1}^m\operatorname{lcm}(i,j)\bmod 20101009
\]
数据范围:\(1\le n,m\le 10^7\)。
作为写出了最暴力的做法的蒟蒻,来推个式子。
\(n\le m\),一气呵成:
g(n,m)=&\sum\limits_{i=1}^n\sum\limits_{j=1}^m\operatorname{lcm}(i,j)\\
=&\sum\limits_{i=1}^n\sum\limits_{j=1}^m\frac{ij}{\gcd(i,j)}\\
=&\sum\limits_{d=1}^n\sum\limits_{i=1}^n\sum\limits_{j=1}^m\frac{ij}{d}[\gcd(i,j)=d]\\
=&\sum\limits_{d=1}^n\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\sum\limits_{j=1}^{\lfloor\frac md\rfloor}ijd[\gcd(i,j)=1]\\
=&\sum\limits_{d=1}^n d\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}i\sum\limits_{j=1}^{\lfloor\frac md\rfloor}j\sum\limits_{k|\gcd(i,j)}\mu(k)\\
=&\sum\limits_{d=1}^n d\sum\limits_{k=1}^n\mu(k)\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}i[k|i]\sum\limits_{j=1}^{\lfloor\frac md\rfloor}j[k|j]\\
=&\sum\limits_{d=1}^n d\sum\limits_{k=1}^n\mu(k)\sum\limits_{i=1}^{\lfloor\frac {n}{dk}\rfloor}ik\sum\limits_{j=1}^{\lfloor\frac {m}{dk}\rfloor}jk\\
=&\sum\limits_{d=1}^n d\sum\limits_{k=1}^nk^2\mu(k)\frac{\lfloor\frac{n}{dk}\rfloor(\lfloor\frac{n}{dk}\rfloor+1)}{2}\cdot\frac{\lfloor\frac{m}{dk}\rfloor(\lfloor\frac{m}{dk}\rfloor+1)}{2}\\
\end{split}
\]
将 \(x=dk\) 带入:
\]
然后筛 \(\mu(k)\) 时顺便计算 \(h(k)=k\mu(k)\),最后狄利克雷前缀和求 \(f(k)=\sum\limits_{k|x}k\mu(k)\)。
别忘了膜拜 \(20101009\),时间复杂度 \(\Theta(N+n)\)。
#include <bits/stdc++.h>
using namespace std;
//&Start
#define lng long long
#define lit long double
#define kk(i,n) "\n "[i<n]
const int inf=0x3f3f3f3f;
const lng Inf=1e17;
//&Mobius
const int N=1e7;
const int mod=20101009;
bitset<N+10> np;
int mu[N+10],cnt,p[N+10],f[N+10];
void Mobius(){
f[1]=mu[1]=1;
for(int i=2;i<=N;i++){
if(!np[i]) p[++cnt]=i,mu[i]=-1;
f[i]=(mu[i]*i+mod)%mod;
for(int j=1;j<=cnt&&i*p[j]<=N;j++){
np[i*p[j]]=1;
if(i%p[j]==0){mu[i*p[j]]=0;break;}
mu[i*p[j]]=-mu[i];
}
}
for(int j=1;j<=cnt;j++)
for(int i=1;i*p[j]<=N;i++)
(f[i*p[j]]+=f[i])%=mod; //狄利克雷前缀和
}
//&Data
int n,m,ans;
int bitfun(int x){
lng res=1ll*x*f[x]%mod;
(res*=1ll*(n/x+1)*(n/x)/2%mod)%=mod;
(res*=1ll*(m/x+1)*(m/x)/2%mod)%=mod; //如上
//这个1ll不乘要爆long long,30分。
return (int)res;
}
//&Main
int main(){
Mobius();
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(int i=1;i<=n;i++)
(ans+=bitfun(i))%=mod;
printf("%d\n",ans);
return 0;
}
祝大家学习愉快!
题解-[国家集训队]Crash的数字表格 / JZPTAB的更多相关文章
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告
[国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- 【题解】[国家集训队]Crash的数字表格 / JZPTAB
求解\(\sum_{i = 1}^{n}\sum_{j = 1}^{m}lcm\left ( i,j \right )\). 有\(lcm\left ( i,j \right )=\frac{ij}{ ...
- 题解 P1829 【[国家集训队]Crash的数字表格 / JZPTAB】
题目 我的第一篇莫比乌斯反演题解 兴奋兴奋兴奋 贡献一个本人自己想的思路,你从未看到过的船新思路 [分析] 显然,题目要求求的是 \(\displaystyle Ans=\sum_{i=1}^n\su ...
- [luogu1829][bzoj2154][国家集训队]Crash的数字表格 / JZPTAB【莫比乌斯反演】
传送门:洛谷,bzoj 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整 ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...
- [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB
推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉) 思路 莫比乌斯反演的题目 首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕 然后就是爆推一波式子 \[ \sum_{i= ...
- 【[国家集训队]Crash的数字表格 / JZPTAB】
这道题我们要求的是 \[\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)\] 总所周知\(lcm\)的性质不如\(gcd\)优雅,但是唯一分解定理告诉我们\(gcd(i,j)\time ...
随机推荐
- cetos6.5 gcc4.8 安装
1.准备源 #安装仓库 wget http://people.centos.org/tru/devtools-2/devtools-2.repo mv devtools-2.repo /etc/yum ...
- 使用ViewPager实现卡片叠加效果
使用ViewPager实现卡片叠加效果 背景 在开发项目时,需要对 App的某个资源模块进行界面重构,其中在资源展示部分中新的交互以卡片叠加的效果替代了原来的资源组织树门禁展示方式.在新的资源展示方式 ...
- Python pip下载过慢解决方案
pip是一个python的包安装与管理工具,安装python时候可以选择是否安装,如果安装了pip可以使用命令查看版本 C:\Users\Vincente λ pip -V pip 19.2.3 fr ...
- python-网络安全编程第三天(正则表达式)
python 正则表达式 正则表达式本身是一种小型的.高度专业化的编程语言,而在python中,通过内嵌集成re模块,程序媛们可以直接调用来实现正则匹配.正则表达式模式被编译成一系列的字节码,然后由用 ...
- 深度分析:java8的新特性lambda和stream流,看完你学会了吗?
1. lambda表达式 1.1 什么是lambda 以java为例,可以对一个java变量赋一个值,比如int a = 1,而对于一个方法,一块代码也是赋予给一个变量的,对于这块代码,或者说被赋给变 ...
- python 几个循环的效率测试
前言:对于我这种追求极致的人来说,效率很重要. 前面看到网上关于python循环的测评,到自己在项目中的应用,发现,并不是这么回事.所以,写下次博文,一次性了解这个问题. 语言版本:python3.6 ...
- 网络拓扑实例之交换机基于接口地址池作为DHCP服务器(六)
组网图形 DHCP服务器简介 通常用户希望网络中的每台终端能够动态获取IP地址.DNS服务器的IP地址.路由信息.网关信息等网络参数,不需要手动配置终端的IP地址等网络参数:另外,针对一些移动终端(手 ...
- G - Pyramid 题解(打表)
题目链接 题目大意 t组数据,给你一个n(n<=1e9)求高度为n的等边三角形,求里面包含了多少个等边三角形 题目思路 打表找规律,然而我一直没找到规律. 看到题解恍然大悟,答案就是C(n+3, ...
- C语言讲义——链表完整代码
#include <stdio.h> #include <stdlib.h> #include <string.h> struct Node { int _id; ...
- java多线程--【Foam番茄】
进程 是系统资源分配的单位 线程 通常在一个进程中可以包含若干个线程,当然一个进程中至少有一个线程,不然没有存在的意义.线程是cpu调度和执行的单位 注意:很多多线程是模拟出来的,真正的多线程是指有多 ...