<<一种基于δ函数的图象边缘检测算法>>一文算法的实现。
原始论文下载: 一种基于δ函数的图象边缘检测算法。
这篇论文读起来感觉不像现在的很多论文,废话一大堆,而是直入主题,反倒使人觉得文章的前后跳跃有点大,不过算法的原理已经讲的清晰了。
一、原理
文中提出的边缘检测算法原理也不是特别复杂,使用了一个低通滤波函数以及一个高通滤波函数,其形式分别为:
(1)
(2)
当图像中的噪音比较少时,可以直接使用高通滤波器对图像进行滤波,得到图像的细节信息(即边缘处),论文中称之为D算法,计算公式如下:
式中顶部的横线应该是表示开平方的意思。
而当图像含有噪音时,则采用高通和低通滤波器结合方式,使用低通滤波器平滑图像中的噪音,高通滤波器检测边缘,这个原理则类似于高斯拉普拉斯边缘检测过程,论文中称之为C算法,计算公式如下:
式中w表示的是窗口大小,取值越大,边缘的宽度越大,建议理想取值为2。
上面两个式子都已经是离散化的表达方式了,因此实际上也是一种对图像的模板操作,只是模板中的因子需要随着参数的不同而改变。
注意:D算法仅仅是一维的模板操作,而C算法是二维的。
二、代码
下面贴出D算法的核心代码:
void EdgeDetail(byte* Src, byte* Dest, int Width, int Height, int Stride, int Radius = , double S = , double T = )
{
int X, Y, I, J, XX, YY;
byte* SrcP, DestP;
int SumOne, SumTwo, Power;
byte* SqrValue = (byte*)GlobalAlloc(GPTR, ( * ) * sizeof(byte));
int* SpeedHigh = (int*)GlobalAlloc(GPTR, (Radius * + ) * sizeof(int)); SpeedHigh += Radius; for (Y = ; Y < * ; Y++) SqrValue[Y] = (byte)Math.Sqrt(Y); for (Y = -Radius; Y <= Radius; Y++)
{
if (Y == )
SpeedHigh[Y] = ;
else
SpeedHigh[Y] = (int)((((Math.Cos(S * Y) / Y) - (Math.Sin(S * Y) / S) * (1.0 / (Y * Y) + 1.0 / (T * T))) * Math.Exp(-((double)Y * Y) / ( * T * T))) * );
}
for (Y = ; Y < Height; Y++)
{
DestP = Dest + Y * Stride;
for (X = ; X < Width; X++)
{
SumOne = ; SumTwo = ;
for (J = -Radius; J <= Radius; J++)
{
XX = X + J;
if (XX < ) XX = ; else if (XX >= Width) XX = Width - ;
SrcP = Src + Stride * Y + XX;
SumOne += (SpeedHigh[J] * SrcP[]) >> ;
YY = Y + J;
if (YY < ) YY = ; else if (YY >= Height) YY = Height - ;
SrcP = Src + Stride * YY + X;
SumTwo += (SpeedHigh[J] * SrcP[]) >> ;
}
Power = SumOne * SumOne + SumTwo * SumTwo;
if (Power > ) Power = ;
DestP[] = SqrValue[Power];
DestP++;
}
}
SpeedHigh -= Radius;
GlobalFree((IntPtr)SqrValue);
GlobalFree((IntPtr)SpeedHigh);
}
如上所示,我采用了整数运算代替了浮点运算,主要目的是为了提高速度,当然这样做可能会牺牲一部分精度,由于从算法的必要性上讲,Radius不需要取得很大,因此,对于内部的二重循环来说,压力不是特大,因此没有做特殊的优化。而在超出边界处,直接采用的是使用边界元素值。
上述代码的内部循环里有一些计算式可以提取到外部来的, 只是为了算法的清晰性,未做优化,速度发烧友可以自行提取。
该算法各像素之间的计算式独立的,因此可以很简单的就实现并行计算。
而C算法的代码就稍微复杂一点:
void EdgeCoarse(byte* Src, byte* Dest, int Width, int Height, int Stride, int Radius = , double S0 = 0.3, double T0 = , double S1 = 0.2, double T1 = )
{
int X, Y, I, J, XX, YY;
byte* SrcP, DestP;
int SumOne, SumTwo, Power;
int* SqrValue = (int*)GlobalAlloc(GPTR, ( * ) * sizeof(int));
int* SpeedHigh = (int*)GlobalAlloc(GPTR, (Radius * + ) * sizeof(int));
int* SpeedLow = (int*)GlobalAlloc(GPTR, (Radius * + ) * sizeof(int)); SpeedHigh += Radius;
SpeedLow += Radius; for (Y = ; Y < * ; Y++) SqrValue[Y] = (int)Math.Sqrt(Y); for (Y = -Radius; Y <= Radius; Y++)
{
if (Y == )
{
SpeedHigh[Y] = ;
SpeedLow[Y] = ;
}
else
{
SpeedHigh[Y] = (int)((((Math.Cos(S1 * Y) / Y) - (Math.Sin(S1 * Y) / S1) * (1.0 / (Y * Y) + 1.0 / (T1 * T1))) * Math.Exp(-((double)Y * Y) / ( * T1 * T1))) * );
SpeedLow[Y] = (int)(((Math.Sin(S0 * Y) / (S0 * Y)) * Math.Exp(-((double)Y * Y) / ( * T0 * T0))) * );
}
} for (Y = ; Y < Height; Y++)
{
DestP = Dest + Y * Stride;
for (X = ; X < Width; X++)
{
SumOne = ; SumTwo = ;
for (J = -Radius; J <= Radius; J++)
{
YY = Y + J;
if (YY < ) YY = ; else if (YY >= Height) YY = Height - ;
for (I = -Radius; I <= Radius; I++)
{
XX = X + I;
if (XX < ) XX = ; else if (XX >= Width) XX = Width - ;
SrcP = Src + Stride * YY + XX;
SumOne += (SpeedHigh[I] * SpeedLow[J] * SrcP[]) >>;
SumTwo += (SpeedLow[I] * SpeedHigh[J] * SrcP[]) >>;
}
}
Power = SumOne * SumOne + SumTwo * SumTwo;
if (Power > ) Power = ;
DestP[] = (byte)SqrValue[Power];
DestP++;
}
}
SpeedHigh -= Radius;
SpeedLow -= Radius;
GlobalFree((IntPtr)SqrValue);
GlobalFree((IntPtr)SpeedHigh);
GlobalFree((IntPtr)SpeedLow); }
我个人不怎么喜欢用C#的数组,这也是从性能角度考虑的,我喜欢直接操作指针。这个可以根据每个人自己的习惯修改吧。
相信能看懂原理的朋友对于代码部分的理解也应该很容易,这里不做多解释。
三、效果
c算法的结果
原图 Radius=2,S=3.14,T=1 Radius=2,S=1.57,T=1
D算法:
原图 Radius=2,S0 = 0.3, T0 = 3, S1 = 0.2, T1 = 2 Radius=2,S0 = 3, T0 = 3, S1 = 2, T1 = 2
可见,这个算法要取得比较好的效果,是需要调整S/T这些参数,关于这些参数的取值意向,可以参考原文中的一些描述。
这个工程比较简单,附上C#的程序:http://files.cnblogs.com/Imageshop/EdgeDetectUseDeltaFunction.rar
*********************************作者: laviewpbt 时间: 2013.10.26 联系QQ: 33184777 转载请保留本行信息************************
<<一种基于δ函数的图象边缘检测算法>>一文算法的实现。的更多相关文章
- 一种可实时处理 O(1)复杂度图像去雾算法的实现。
在我博文的一系列的文章,有不少算法都于去雾有关,比如限制对比度自适应直方图均衡化算法原理.实现及效果.局部自适应自动色阶/对比度算法在图像增强上的应用这两个增强算法都有一定的去雾能力,而最直接的就是& ...
- 基于思岚A1激光雷达+OpenGL+VS2017的Ramer-Douglas-Peucker算法的实现
时隔两年 又借到了之前的那个激光雷达,最老版本的思岚A1,甚至不支持新的固件,并且转接板也不见了,看了下淘宝店卖¥80,但是官方提供了一个基于STM32的实现方式,于是我估摸着这个转接板只是一个普通的 ...
- 图中最短路径算法(Dijkstra算法)(转)
1.Dijkstra 1) 适用条件&范围: a) 单源最短路径(从源点s到其它所有顶点v); b) 有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E ...
- 腾讯优图&港科大提出一种基于深度学习的非光流 HDR 成像方法
目前最好的高动态范围(HDR)成像方法通常是先利用光流将输入图像对齐,随后再合成 HDR 图像.然而由于输入图像存在遮挡和较大运动,这种方法生成的图像仍然有很多缺陷.最近,腾讯优图和香港科技大学的研究 ...
- Canny边缘检测算法(基于OpenCV的Java实现)
目录 Canny边缘检测算法(基于OpenCV的Java实现) 绪论 Canny边缘检测算法的发展历史 Canny边缘检测算法的处理流程 用高斯滤波器平滑图像 彩色RGB图像转换为灰度图像 一维,二维 ...
- Hive数据分析——Spark是一种基于rdd(弹性数据集)的内存分布式并行处理框架,比于Hadoop将大量的中间结果写入HDFS,Spark避免了中间结果的持久化
转自:http://blog.csdn.net/wh_springer/article/details/51842496 近十年来,随着Hadoop生态系统的不断完善,Hadoop早已成为大数据事实上 ...
- python_mmdt:一种基于敏感哈希生成特征向量的python库(一)
概述 python_mmdt是一种基于敏感哈希的特征向量生成工具.核心算法使用C实现,提高程序执行效率.同时使用python进行封装,方便研究人员使用. 本篇幅主要介绍涉及的相关基本内容与使用,相关内 ...
- LM-MLC 一种基于完型填空的多标签分类算法
LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛[赛道一]设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签 ...
- Qt——信号槽连接:基于字符串与基于函数的连接之间的不同
从Qt5.0开始,Qt提供了两种不同的方式进行信号槽的连接:基于 字符串 的连接语法.基于 函数 的连接语法.这两种语法各有利弊,下面对它们的不同点进行总结. 以下几部分详细解释了它们之间的不同,并说 ...
随机推荐
- 【处理手记】VS2010SP1安装不上Visual Studio 2010 SP1 SDK的解决办法
想写个VS插件,需要安装VS的SDK,VS2010SP1对应的SDK自然是Visual Studio 2010 SP1 SDK,下载页面: https://www.microsoft.com/en-u ...
- jquery easyui菜单树显示
目前做了一个easyui项目需要显示多级菜单,菜单配置到数据库中,因此每级菜单都需要到数据库中取,用了jQuery EasyUI方便多了. 效果体验:http://hovertree.com/texi ...
- 异步与并行~ReaderWriterLockSlim实现的共享锁和互斥锁
返回目录 在System.Threading.Tasks命名空间下,使用ReaderWriterLockSlim对象来实现多线程并发时的锁管理,它比lock来说,性能更好,也并合理,我们都知道lock ...
- super.getClass()方法调用
下面程序的输出结果是多少?import java.util.Date;public class Test extends Date{public static void main(String[] a ...
- 数三角形 bzoj 1201
数三角形(1s 128MB)triangle [题目描述] 小苏看到一个这样的等边三角形:该等边三角形每边的长度为n且被分成n等份,于是每条边就有n-1个等分点.而整个三角形被连接两个不同边的等分点且 ...
- java web学习总结(七) -------------------HttpServletResponse对象(一)
Web服务器收到客户端的http请求,会针对每一次请求,分别创建一个用于代表请求的request对象.和代表响应的response对象.request和response对象即然代表请求和响应,那我们要 ...
- jquery投色子动画
可以点击这里体验效果:http://keleyi.com/keleyi/phtml/jqtexiao/26.htm 效果图: 代码如下: <!DOCTYPE HTML> <html& ...
- 天津政府应急系统之GIS一张图(arcgis api for flex)讲解(三)显示地图坐标系模块
config.xml文件的配置如下: <widget left="3" bottom="3" config="widgets/Coordinat ...
- Android 源码解析之AsyncTask
AsyncTask相信大家都不陌生,它是为了简化异步请求.更新UI操作而诞生的.使用它不仅可以完成我们的网络耗时操作,而且还可以在完成耗时操作后直接的更新我们所需要的UI组件.这使得它在android ...
- Intent(三)向下一个活动传递数据
向下传递活动很简单,可以我采用putExtra()方法的重载,把我们想要传递的数据暂时放在intent中,启动活动时从这里取就可以了. 首先我们在MainActivity(主活动)显式声明intent ...