题目

给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

插入一个字符

删除一个字符

替换一个字符

示例 1:

输入: word1 = "horse", word2 = "ros"

输出: 3

解释:

horse -> rorse (将 'h' 替换为 'r')

rorse -> rose (删除 'r')

rose -> ros (删除 'e')

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/edit-distance

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题解

  • dp

    • 状态

      dp[i][j]表示word1[0,i-1]变为word2[0,j-1]需要的最少编辑距离,特别的dp[0][j]表示从空串变为word2[0,j-1]需要的最少距离。
    • 转移方程
dp[i][j] = dp[i - 1][j - 1]  ,word[i-1]=word2[j-1]
dp[i][j] = Math.min(Math.min(dp[i - 1][j - 1] , dp[i - 1][j]), dp[i][j - 1]) + 1,word[i-1]!=word2[j-1]
- 初始化
		for (int j = 0; j <= word2.length(); ++j) {
dp[0][j] = j;
}
for (int i = 0; i <= word1.length(); ++i) {
dp[i][0] = i;
}

代码

class Solution {
public int minDistance(String word1, String word2) {
int[][] dp = new int[word1.length() + 1][word2.length() + 1];
for (int j = 0; j <= word2.length(); ++j) {
dp[0][j] = j;
}
for (int i = 0; i <= word1.length(); ++i) {
dp[i][0] = i;
} for (int i = 1; i <= word1.length(); ++i) {
for (int j = 1; j <= word2.length(); ++j) {
if (word2.charAt(j - 1) == word1.charAt(i - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = Math.min(Math.min(dp[i - 1][j - 1], dp[i - 1][j]), dp[i][j - 1]) + 1;
}
}
}
return dp[word1.length()][word2.length()];
}
}

[LeetCode]72. 编辑距离(DP)的更多相关文章

  1. Java实现 LeetCode 72 编辑距离

    72. 编辑距离 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字 ...

  2. [leetcode] 72. 编辑距离(二维动态规划)

    72. 编辑距离 再次验证leetcode的评判机有问题啊!同样的代码,第一次提交超时,第二次提交就通过了! 此题用动态规划解决. 这题一开始还真难到我了,琢磨半天没有思路.于是乎去了网上喵了下题解看 ...

  3. leetcode 72.编辑距离(dp)

    链接:https://leetcode-cn.com/problems/edit-distance/submissions/ 设dp[i][j]表示串s1前i个字符变换成串s2前j个字符所需要的最小操 ...

  4. [LeetCode] 72. 编辑距离 ☆☆☆☆☆(动态规划)

    https://leetcode-cn.com/problems/edit-distance/solution/bian-ji-ju-chi-mian-shi-ti-xiang-jie-by-labu ...

  5. [Leetcode 72]编辑距离 Edit Distance

    [题目] Given two words word1 and word2, find the minimum number of operations required to convert word ...

  6. leetcode 72. 编辑距离

    /***** 定义状态: DP[i][j]其中i表示word1前i个字符,j表示Word2前i个字符 DP[i][j]表示单词1前i个字符匹配单词2前j个字符,最少变换次数: 状态转移: for i: ...

  7. 第30章 LeetCode 72 编辑距离

    每日一句 A flower cannot blossom without sunshine, and man cannot live without love. 花没有阳光就不能盛开,人没有爱就不能生 ...

  8. leetcode 72 编辑距离 JAVA

    题目: 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符 示例  ...

  9. Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance)

    Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance) 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可 ...

随机推荐

  1. python设计模式之享元模式

    python设计模式之享元模式 由于对象创建的开销,面向对象的系统可能会面临性能问题.性能问题通常在资源受限的嵌入式系统中出现,比如智能手机和平板电脑.大型复杂系统中也可能会出现同样的问题,因为要在其 ...

  2. MySQL字符集操作

    一.查看编码 show variables like 'character%'; 二.临时设置编码 1.set names xxx set names ${编码}; "set names x ...

  3. python基本数据类型(二)

    列表   list 1.list.append( p_object) ----  增加列表参数(向后追加) list=['lifei','liuhua','laochai'] list.append( ...

  4. 分享一个Flink checkpoint失败的问题和解决办法

    本文来自: PerfMa技术社区 PerfMa(笨马网络)官网 接触Flink一段时间了,遇到了一些问题,其中有一个checkpoint失败导致作业重启的问题,遇到了很多次,重启之后一般也能恢复正常, ...

  5. kafka-clients 1.0 内部请求接口文档

    AddOffsetsToTxnRequest version:0 name type defaultValue docString transactional_id STRING null The t ...

  6. 中文、sci论文写作结构总结

    全文建议:30-40篇参考文献,6-8个图,1-3表,<3000词. 一.题目 1.12~15个词,顶多18个词. 2.6个特点:specific.short.impressive.famili ...

  7. shell 三剑客之 awk

    awk 是shell 里的常用命令,非常强大!

  8. 归纳从文件中读取数据的六种方法-JAVA IO基础总结第2篇

    在上一篇文章中,我为大家介绍了<5种创建文件并写入文件数据的方法>,本节我们为大家来介绍6种从文件中读取数据的方法. 另外为了方便大家理解,我为这一篇文章录制了对应的视频:总结java从文 ...

  9. 基于JSP+Servlet的学生信息管理系统

    JavaWeb期末项目,一个基于JSP和Servlet的学生信息管理系统实现,前端用了bootstrap和一些自定义的css样式,数据库用了mysql 传送门: GitHub 实现功能 登录(教师, ...

  10. Azure Storage 系列(一)入门简介

    一,引言 今天作为新的Azure 资源介绍的开篇,我们来学习一个新的服务,Azure Storage.众所周知,我们实际在开发过程中,会需要存储一些比如说日志,图片,等等,各种类型的数据.比如说存储图 ...