使用pytorch快速搭建神经网络实现二分类任务(包含示例)


Introduce

上一篇学习笔记介绍了不使用pytorch包装好的神经网络框架实现logistic回归模型,并且根据autograd实现了神经网络参数更新。

本文介绍利用pytorch快速搭建神经网络。即利用torch.nn以及torch.optim库来快捷搭建一个简单的神经网络来实现二分类功能。

  • 利用pytorch已经包装好的库(torch.nn)来快速搭建神经网络结构。
  • 利用已经包装好的包含各种优化算法的库(torch.optim)来优化神经网络中的参数,如权值参数w和阈值参数b。

以下均为初学者笔记。


Build a neural network structure

假设我们要搭建一个带有两个隐层的神经网络来实现节点的二分类,输入层包括2个节点(输入节点特征),两个隐层均包含5个节点(特征映射),输出层包括2个节点(分别输出属于对应节点标签的概率)。如下图所示:

上图从左右到右为输入层、隐藏层、隐藏层、输出层,各层之间采用全连接结构。神经网络两隐藏层的激活函数均采用sigmoid函数,输出层最后采用softmax函数归一化概率。

网络搭建过程中使用的torch.nn相关模块介绍如下:

  • torch.nn.Sequential:是一个时序容器,我们可以通过调用其构造器,将神经网络模块按照输入层到输出层的顺序传入,以此构造完整的神经网络结构,具体用法参考如下神经网络搭建代码。
  • torch.nn.Linear:设置网络中的全连接层,用来实现网络中节点输入的线性求和,即实现如下线性变换函数:

\[y = xA^T + b
\]


'''
搭建神经网络,
输入层包括2个节点,两个隐层均包含5个节点,输出层包括1个节点。''' net = nn.Sequential(
nn.Linear(2,5), # 输入层与第一隐层结点数设置,全连接结构
torch.nn.Sigmoid(), # 第一隐层激活函数采用sigmoid
nn.Linear(5,5), # 第一隐层与第二隐层结点数设置,全连接结构
torch.nn.Sigmoid(), # 第一隐层激活函数采用sigmoid
nn.Linear(5,2), # 第二隐层与输出层层结点数设置,全连接结构
nn.Softmax(dim=1) # 由于有两个概率输出,因此对其使用Softmax进行概率归一化,dim=1代表行归一化
) print(net) '''
Sequential(
(0): Linear(in_features=2, out_features=5, bias=True)
(1): Sigmoid()
(2): Linear(in_features=5, out_features=5, bias=True)
(3): Sigmoid()
(4): Linear(in_features=5, out_features=2, bias=True)
(5): Softmax(dim=1)
)'''

Configure Loss Function and Optimizer

note: torch.optim库中封装了许多常用的优化方法,这边使用了最常用的随机梯度下降来优化网络参数。例子中使用了交叉熵损失作为代价函数,其实torch.nn中也封装了许多代价函数,具体可以查看官方文档。对于pytorch中各种损失函数的学习以及优化方法的学习将在后期进行补充。

配置损失函数和优化器的代码如下所示:

# 配置损失函数和优化器
optimizer = torch.optim.SGD(net.parameters(),lr=0.01) # 优化器使用随机梯度下降,传入网络参数和学习率
loss_func = torch.nn.CrossEntropyLoss() # 损失函数使用交叉熵损失函数

Model Training

神经网络训练过程大致如下:首先输入数据,接着神经网络进行前向传播,计算输出层的输出,进而计算预先定义好的损失(如本例中的交叉熵损失),接着进行误差反向传播,利用事先设置的优化方法(如本例中的随机梯度下降SGD)来更新网络中的参数,如权值参数w和阈值参数b。接着反复进行上述迭代,达到最大迭代次数(num_epoch)或者损失值满足某条件之后训练停止,从而我们可以得到一个由大量数据训练完成的神经网络模型。模型训练的代码如下所示:

# 模型训练
num_epoch = 10000 # 最大迭代更新次数
for epoch in range(num_epoch):
y_p = net(x_t) # 喂数据并前向传播 loss = loss_func(y_p,y_t.long()) # 计算损失
'''
PyTorch默认会对梯度进行累加,因此为了不使得之前计算的梯度影响到当前计算,需要手动清除梯度。
pyTorch这样子设置也有许多好处,但是由于个人能力,还没完全弄懂。
'''
optimizer.zero_grad() # 清除梯度
loss.backward() # 计算梯度,误差回传
optimizer.step() # 根据计算的梯度,更新网络中的参数 if epoch % 1000 == 0:
print('epoch: {}, loss: {}'.format(epoch, loss.data.item())) '''
每1000次输出损失如下:
epoch: 0, loss: 0.7303197979927063
epoch: 1000, loss: 0.669952392578125
epoch: 2000, loss: 0.6142827868461609
epoch: 3000, loss: 0.5110923051834106
epoch: 4000, loss: 0.4233965575695038
epoch: 5000, loss: 0.37978556752204895
epoch: 6000, loss: 0.3588798940181732
epoch: 7000, loss: 0.3476340174674988
......
''' print("所有样本的预测标签: \n",torch.max(y_p,dim = 1)[1]) '''
note:可以发现前100个标签预测为0,后100个样本标签预测为1。因此所训练模型可以正确预测训练集标签。
所有样本的预测标签:
tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1])
'''

网络的保存和提取

'''两种保存方式
第一种: 保存网络的所有参数(包括网络结构)
torch.save(net,'net.pkl')
对应加载方式: net1 = torch.load('net.pkl')
第二种: 仅保存网络中需要训练的参数 ,即net.state_dict(),如权值参数w和阈值参数b。(不包括网络结构)
torch.save(net.state_dict(),'net_parameter.pkl')
对应加载方式:
加载时需要提供两个信息:
第一: 网络结构信息,需要先重新搭建和保存的网络同样的网络结构。
第二: 保存的网络中的参数的信息,权值和阈值参数。
具体加载方式如下:
net = nn.Sequential(
nn.Linear(2,5),
torch.nn.Sigmoid(),
nn.Linear(5,5),
torch.nn.Sigmoid(),
nn.Linear(5,2),
nn.Softmax(dim=1)
)
net2.load_state_dict(torch.load('net_parameter.pkl')
'''

本文参考-1

本文参考-2

附完整代码

import torch
import torch.nn as nn '''
使用正态分布随机生成两类数据
第一类有100个点,使用均值为2,标准差为1的正态分布随机生成,标签为0。
第二类有100个点,使用均值为-2,标准差为1的正态分布随机生成,标签为1。
torch.normal(tensor1,tensor2)
输入两个张量,tensor1为正态分布的均值,tensor2为正态分布的标准差。
torch.normal以此抽取tensor1和tensor2中对应位置的元素值构造对应的正态分布以随机生成数据,返回数据张量。
''' x1_t = torch.normal(2*torch.ones(100,2),1)
y1_t = torch.zeros(100) x2_t = torch.normal(-2*torch.ones(100,2),1)
y2_t = torch.ones(100) x_t = torch.cat((x1_t,x2_t),0)
y_t = torch.cat((y1_t,y2_t),0) '''
搭建神经网络,
输入层包括2个节点,两个隐层均包含5个节点,输出层包括1个节点。
''' net = nn.Sequential(
nn.Linear(2,5), # 输入层与第一隐层结点数设置,全连接结构
torch.nn.Sigmoid(), # 第一隐层激活函数采用sigmoid
nn.Linear(5,5), # 第一隐层与第二隐层结点数设置,全连接结构
torch.nn.Sigmoid(), # 第一隐层激活函数采用sigmoid
nn.Linear(5,2), # 第二隐层与输出层层结点数设置,全连接结构
nn.Softmax(dim=1) # 由于有两个概率输出,因此对其使用Softmax进行概率归一化
) print(net)
'''
Sequential(
(0): Linear(in_features=2, out_features=5, bias=True)
(1): Sigmoid()
(2): Linear(in_features=5, out_features=5, bias=True)
(3): Sigmoid()
(4): Linear(in_features=5, out_features=2, bias=True)
(5): Softmax(dim=1)
)''' # 配置损失函数和优化器
optimizer = torch.optim.SGD(net.parameters(),lr=0.01) # 优化器使用随机梯度下降,传入网络参数和学习率
loss_func = torch.nn.CrossEntropyLoss() # 损失函数使用交叉熵损失函数 # 模型训练
num_epoch = 10000 # 最大迭代更新次数
for epoch in range(num_epoch):
y_p = net(x_t) # 喂数据并前向传播 loss = loss_func(y_p,y_t.long()) # 计算损失
'''
PyTorch默认会对梯度进行累加,因此为了不使得之前计算的梯度影响到当前计算,需要手动清除梯度。
pyTorch这样子设置也有许多好处,但是由于个人能力,还没完全弄懂。
'''
optimizer.zero_grad() # 清除梯度
loss.backward() # 计算梯度,误差回传
optimizer.step() # 根据计算的梯度,更新网络中的参数 if epoch % 1000 == 0:
print('epoch: {}, loss: {}'.format(epoch, loss.data.item())) '''
torch.max(y_p,dim = 1)[0]是每行最大的值
torch.max(y_p,dim = 1)[0]是每行最大的值的下标,可认为标签
'''
print("所有样本的预测标签: \n",torch.max(y_p,dim = 1)[1])

使用pytorch快速搭建神经网络实现二分类任务(包含示例)的更多相关文章

  1. pytorch 6 build_nn_quickly 快速搭建神经网络

    import torch import torch.nn.functional as F # replace following class code with an easy sequential ...

  2. 逻辑回归(Logistic Regression)二分类原理及python实现

    本文目录: 1. sigmoid function (logistic function) 2. 逻辑回归二分类模型 3. 神经网络做二分类问题 4. python实现神经网络做二分类问题 1. si ...

  3. 用Keras搭建神经网络 简单模版(二)——Classifier分类(手写数字识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...

  4. Tensorflow学习:(二)搭建神经网络

    一.神经网络的实现过程 1.准备数据集,提取特征,作为输入喂给神经网络       2.搭建神经网络结构,从输入到输出       3.大量特征数据喂给 NN,迭代优化 NN 参数       4.使 ...

  5. keras搭建神经网络快速入门笔记

    之前学习了tensorflow2.0的小伙伴可能会遇到一些问题,就是在读论文中的代码和一些实战项目往往使用keras+tensorflow1.0搭建, 所以本次和大家一起分享keras如何搭建神经网络 ...

  6. [DeeplearningAI笔记]卷积神经网络4.1-4.5 人脸识别/one-shot learning/Siamase网络/Triplet损失/将面部识别转化为二分类问题

    4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.1什么是人脸识别 Face verification人脸验证 VS face recogniti ...

  7. 【pytorch】学习笔记(四)-搭建神经网络进行关系拟合

    [pytorch学习笔记]-搭建神经网络进行关系拟合 学习自莫烦python 目标 1.创建一些围绕y=x^2+噪声这个函数的散点 2.用神经网络模型来建立一个可以代表他们关系的线条 建立数据集 im ...

  8. 从零到一快速搭建个人博客网站(域名自动跳转www,二级域名使用)(二)

    前言 本篇文章是对上篇文章从零到一快速搭建个人博客网站(域名备案 + https免费证书)(一)的完善,比如域名自动跳转www.二级域名使用等. 域名自动跳转www 这里对上篇域名访问进行优化,首先支 ...

  9. 利用 TFLearn 快速搭建经典深度学习模型

      利用 TFLearn 快速搭建经典深度学习模型 使用 TensorFlow 一个最大的好处是可以用各种运算符(Ops)灵活构建计算图,同时可以支持自定义运算符(见本公众号早期文章<Tenso ...

随机推荐

  1. 【XCTF】Cat

    标签:宽字节.PHP.Django.命令执行 解题过程 目录扫描没有发现任何可疑页面. 测试输入许多域名,均没有反应:输入ip地址得到回显. 猜测为命令执行,尝试使用管道符拼接命令. 测试:|.&am ...

  2. Scala 面向对象(七):静态属性和静态方法

    1 Scala中静态的概念-伴生对象 Scala语言是完全面向对象(万物皆对象)的语言,所以并没有静态的操作(即在Scala中没有静态的概念). 但是为了能够和Java语言交互(因为Java中有静态概 ...

  3. bzoj4236JOIOJI

    bzoj4236JOIOJI 题意: 给一个只由JOI三个字母组成的串,求最长的一个子串使其中JOI三个字母出现次数相等.串长度≤200000 题解: 有点像bzoj4384,因此推算的过程是差不多的 ...

  4. js 左右切换 局部刷新

    //刷新地方的ID,后面ID前必须加空格 $("#gwc").load(location.href + " #gwc");

  5. mysql间隙锁

    什么是间隙锁(gap lock)? 间隙锁是一个在索引记录之间的间隙上的锁. 间隙锁的作用? 保证某个间隙内的数据在锁定情况下不会发生任何变化.比如我mysql默认隔离级别下的可重复读(RR). 当使 ...

  6. linux $* 和$@例子

    参见ibm网站示例: https://www.ibm.com/developerworks/cn/linux/l-bash-parameters.html 示例: [ian@pinguino ~]$ ...

  7. Facebook没有测试工程师,如何进行质量控制的?

    Facebook从04年的哈佛校园的学生项目在短短的7-8年的时间中快速增长为拥有10亿用户的世界上最大的社交网络,又一次见证了互联网创业成功的奇迹.同时它的产品研发流程也成为了众多互联网产品公司的追 ...

  8. Ethical Hacking - Web Penetration Testing(10)

    SQL INJECTION SQLMAP Tool designed to exploit SQL injections. Works with many DB types, MySQL, MSSQL ...

  9. 猴子吃桃问题之《C语言经典案例分析》

    猴子吃桃问题之<C语言经典案例分析>一.[什么是猴子吃桃]       猴子吃桃问题:猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个.第二天早上又将第一天剩下的桃子吃掉一半 ...

  10. Java基础之(IO流)

    简介: 流是一组有顺序的,有起点和终点的字节集合,是对数据传输的总称或抽象.即数据在两设备间的传输称为流,流的本质是数据传输,根据数据传输特性将流抽象为各种类,方便更直观的进行数据操作. 一.File ...