1.tf.nn :提供神经网络相关操作,包括卷积神经(conv),池化操作(pooling),归一化,loss,分类操作,embedding,RNN,Evaluation.

2.tf.layers:高层的神经网络,和卷积神经有关。

3.tf.contrib:tf.contrib.layers提供计算图中的网络层,正则化,摘要操作

附:tf.nn官方文档:

Activation Functions(激活函数)
tf.nn.relu(features, name=None) #max(features, 0)
tf.nn.relu6(features, name=None) #min(max(features, 0), 6)
tf.nn.softplus(features, name=None) #log(exp(features) + 1)
tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None) #计算dropout
tf.nn.bias_add(value, bias, name=None) #加偏置
tf.sigmoid(x, name=None) # 1/(1+exp(-x))
tf.tanh(x, name=None) #双曲正切曲线 (exp(x)-exp(-x))/(exp(x)+exp(-x))

Convolution(卷积运算)
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) #4D input
tf.nn.depthwise_conv2d(input, filter, strides, padding, name=None) #5D input
tf.nn.separable_conv2d(input, depthwise_filter, pointwise_filter, strides, padding, name=None) #执行一个深度卷积,分别作用于通道上,然后执行一个混合通道的点卷积

Pooling(池化)
tf.nn.avg_pool(value, ksize, strides, padding, name=None) #平均值池化
tf.nn.max_pool(value, ksize, strides, padding, name=None) #最大值池化
tf.nn.max_pool_with_argmax(input, ksize, strides, padding, Targmax=None, name=None) #放回最大值和扁平索引

Normalization(标准化)
tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None) #L2范式标准化
tf.nn.local_response_normalization(input, depth_radius=None, bias=None, alpha=None, beta=None, name=None) #计算局部数据标准化,每个元素被独立标准化
tf.nn.moments(x, axes, name=None) #平均值和方差

Losses(损失)
tf.nn.l2_loss(t,name=None) #sum(t^2)/2

Classification(分类)
tf.nn.sigmoid_cross_entropy_with_logits(logits, targets, name=None) #交叉熵
tf.nn.softmax(logits, name=None) #softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))
tf.nn.log_softmax(logits, name=None) #logsoftmax[i, j] = logits[i, j] - log(sum(exp(logits[i])))
tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) #计算logits和labels的softmax交叉熵

RNN
tf.nn.rnn(cell, inputs, initial_state=None, dtype=None, sequence_length=None, scope=None) #基于RNNCell类的实例cell建立循环神经网络
tf.nn.dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None) #基于RNNCell类的实例cell建立动态循环神经网络与一般rnn不同的是,该函数会根据输入动态展开返回(outputs,state)
tf.nn.state_saving_rnn(cell, inputs, state_saver, state_name, sequence_length=None, scope=None) #可储存调试状态的RNN网络
tf.nn.bidirectional_rnn(cell_fw, cell_bw, inputs,initial_state_fw=None, initial_state_bw=None, dtype=None,sequence_length=None, scope=None) #双向RNN, 返回一个3元组tuple (outputs, output_state_fw, output_state_bw)

Tensorflow--------tf.nn库的更多相关文章

  1. TensorFlow 学习(七) — 常用函数 api、tf.nn 库

    0. 四则运算 平方:tf.square(),开方:tf.sqrt() tf.add().tf.sub().tf.mul().tf.div().tf.mod().tf.abs().tf.neg() 1 ...

  2. [TensorFlow] tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 ...

  3. TensorFlow——tf.contrib.layers库中的相关API

    在TensorFlow中封装好了一个高级库,tf.contrib.layers库封装了很多的函数,使用这个高级库来开发将会提高效率,卷积函数使用tf.contrib.layers.conv2d,池化函 ...

  4. tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例

    tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例 #!/usr/bin/env python # -*- coding: utf-8 ...

  5. 【TensorFlow基础】tf.add 和 tf.nn.bias_add 的区别

    1. tf.add(x,  y, name) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, ...

  6. TensorFlow函数教程:tf.nn.dropout

    tf.nn.dropout函数 tf.nn.dropout( x, keep_prob, noise_shape=None, seed=None, name=None ) 定义在:tensorflow ...

  7. 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)

    1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...

  8. Tensorflow学习笔记(2):tf.nn.dropout 与 tf.layers.dropout

    A quick glance through tensorflow/python/layers/core.py and tensorflow/python/ops/nn_ops.pyreveals t ...

  9. 第三节,TensorFlow 使用CNN实现手写数字识别(卷积函数tf.nn.convd介绍)

    上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即 ...

  10. 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...

随机推荐

  1. 巨经典论文!推荐系统经典模型Wide & Deep

    今天我们剖析的也是推荐领域的经典论文,叫做Wide & Deep Learning for Recommender Systems.它发表于2016年,作者是Google App Store的 ...

  2. Spring framework核心

    这一部分涵盖了Spring框架绝对不可或缺的所有技术. 1.IOC容器 1.1Spring IoC容器和beans介绍 org.springframework.beans和org.springfram ...

  3. 【游记】CSp2020

    同步发表于洛谷博客 初赛 Day -2 做了个模拟(非洛谷),只有一丁点分,显然过不了 (盗张 i am ak f 的图) Day 0 颓,颓,颓,又做了一套模拟,坚定了退役的信心. Day 1 人好 ...

  4. MarkDown的练习_Java开发学习路径

    MarkDown的练习 语言学习 C/C++语言 Java语言 基础四大件 数据结构与算法 操作系统 计算机网络 设计模式 数据库/SQL 私人令牌:42bb654f53941d5692e98b35f ...

  5. Java 设计模式 —— 组合模式

    在现实生活中,存在很多"部分-整体"的关系,例如,大学中的部门与学院.总公司中的部门与分公司.学习用品中的书与书包.生活用品中的衣服与衣柜.以及厨房中的锅碗瓢盆等.在软件开发中也是 ...

  6. 记badusb制作

    很早之前就听说过这个很牛批的小神器,配合社会工程学渗透简直无敌.. 参考的文章是 GCOW团队 j0 师傅的,文章写的非常详细 ,一步步来就行 https://blog.csdn.net/qq_260 ...

  7. C#中RDLC控制某列的显示隐藏

    使用 1.添加参数IsEnable(用于控制显示或隐藏)2.在RDLC页面,需要控制的列上,右键,列的可见性...,基于表达式隐藏或显示3.输入 IIF(Parameters!IsEnable.Val ...

  8. 使用NPOI读取Word文档内容并进行修改

    前言 网上使用NPOI读取Word文件的例子现在也不少,本文就是参考网上大神们的例子进行修改以适应自己需求的. 参考博文 http://www.cnblogs.com/mahongbiao/p/376 ...

  9. Blogs实现顶部的欢迎信息

    简单,就直接上代码: <div style="text-align: center; font-size:20px; margin-bottom:0px; margin-top:0px ...

  10. 想成为Git大神?从学会reset开始吧

    大家好,今天我们来着重介绍一个非常关键的功能就是reset.在上一篇文章介绍修改历史记录的时候曾经提到过,当我们需要拆分一个历史提交记录的时候需要使用reset.估计很多小伙伴不明白,reset究竟做 ...