Description

An undergraduate student, realizing that he needs to do research to improve his chances of being accepted to graduate school, decided that it is now time to do some independent research. Of course, he has decided to do research in the most important domain:
the requirements he must fulfill to graduate from his undergraduate university. First, he discovered (to his surprise) that he has to fulfill 5 distinct requirements: the general institute requirement, the writing requirement, the science requirement, the
foreign-language requirement, and the field-of-specialization requirement. Formally, a requirement is a fixed number of classes that he has to take during his undergraduate years. Thus, for example, the foreign language requirement specifies that the student
has to take 4 classes to fulfill this requirement: French I, French II, French III, and French IV. Having analyzed the immense multitude of the classes that need to be taken to fulfill the different requirements, our student became a little depressed about
his undergraduate university: there are so many classes to take…

Dejected, the student began studying the requirements of other universities that he might have chosen after high school. He found that, in fact, other universities had exactly the same 5 requirements as his own university. The only difference was that different
universities had different number of classes to be satisfied in each of the five requirement.

Still, it appeared that universities have pretty similar requirements (all of them require a lot of classes), so he hypothesized that no two universities are very dissimilar in their requirements. He defined the dissimilarity of two universities X and Y as
|x1 − y1| + |x2 − y2| + |x3 − y3| + |x4 − y4| + |x5 − y5|,
where an xi (yi) is the number of classes in the requirement i of university X (Y) multiplied by an appropriate factor that measures hardness of the corresponding requirement at the corresponding
university.

Input

The first line of the input file contains an integer N (1 ≤ N ≤ 100 000), the number of considered universities. The following N lines each describe the requirements of a university. A university X is described by the
five non-negative real numbers x1 x2 x3 x4 x5.

Output

On a single line, print the dissimilarity value of the two most dissimilar universities. Your answer should be rounded to exactly two decimal places.

Sample Input

3
2 5 6 2 1.5
1.2 3 2 5 4
7 5 3 2 5

Sample Output

12.80

题意:在五维坐标系下求n个点中两个点的最大曼哈顿距离。

思路:以二维坐标系为例,(x1,y1)(x2,y2)之间的距离为|x1-x2|+|y1-y2|,可能取±(x1-x2)±(y1-y2),且其他情况下算出来的关于这两个点的最大距离肯定比正确算曼哈顿距离的值小(去掉绝对值符号了)。我们可以把同一个坐标的放在一起,变为(±x1±y1)-(±x2±y2)。(注:这里x1和x2前面的符号是一致的,y1和y2前面的符号是一致的,这样才能保证对应值仍保持相减关系)。所以我们只要枚举每一维的分量前面的符号即可,然后求出每一个符号分量状态的最大值和最小值的差,更新最大值就行。

下面给出n维的模板(时间复杂度为O(n*dem*2^dem)

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 100050
#define dem 5
struct node{
double p[dem+1];
}a[maxn];
double maxx[1<<dem],minx[1<<dem]; int main()
{
int n,m,i,j,state,t;
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++){
for(j=1;j<=dem;j++){
scanf("%lf",&a[i].p[j]);
}
}
for(state=0;state<(1<<dem);state++){
maxx[state]=-inf;
minx[state]=inf;
}
double ans=0;
for(state=0;state<(1<<dem);state++){
for(i=1;i<=n;i++){
double cnt=0;
for(t=1;t<=dem;t++){
if(state&(1<<(t-1)) ){
cnt+=a[i].p[t];
}
else{
cnt-=a[i].p[t];
}
}
maxx[state]=max(maxx[state],cnt);
minx[state]=min(minx[state],cnt);
}
ans=max(ans,maxx[state]-minx[state]);
}
printf("%.2f\n",ans);
}
return 0;
}

poj2926Requirements (曼哈顿距离)的更多相关文章

  1. Hdu4311 || 4312Meeting point-1/-2 n个点中任意选一个点使得其余点到该点曼哈顿距离之和最小

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

  2. Atitti knn实现的具体四个距离算法 欧氏距离、余弦距离、汉明距离、曼哈顿距离

    Atitti knn实现的具体四个距离算法  欧氏距离.余弦距离.汉明距离.曼哈顿距离 1. Knn算法实质就是相似度的关系1 1.1. 文本相似度计算在信息检索.数据挖掘.机器翻译.文档复制检测等领 ...

  3. 【POJ 3241】Object Clustering 曼哈顿距离最小生成树

    http://poj.org/problem?id=3241 曼哈顿距离最小生成树模板题. 核心思想是把坐标系转3次,以及以横坐标为第一关键字,纵坐标为第二关键字排序后,从后往前扫.扫完一个点就把它插 ...

  4. 【HDU 4311】Meeting point-1(前缀和求曼哈顿距离和)

    题目链接 正经解法: 给定n个点的坐标,找一个点,到其他点的曼哈顿距离之和最小.n可以是100000.大概要一个O(nlogn)的算法.算曼哈顿距离可以把x和y分开计算排好序后计算前缀和就可以在O(1 ...

  5. hdu4666 Hyperspace ——曼哈顿距离

    link:http://acm.hdu.edu.cn/showproblem.php?pid=4666 这题学会了怎么处理曼哈顿距离. 比如维数是k,那么每个点有2^k个状态,求出在每个状态下,所有点 ...

  6. hdu 4666:Hyperspace(最远曼哈顿距离 + STL使用)

    Hyperspace Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  7. poj 2926:Requirements(最远曼哈顿距离,入门题)

    Requirements Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3908   Accepted: 1318 Desc ...

  8. 某个点到其他点的曼哈顿距离之和最小(HDU4311)

    Meeting point-1 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. HDU 4539 郑厂长系列故事――排兵布阵(曼哈顿距离)

    这虽然是中文题,然而没看懂,不懂的地方,就是在曼哈顿距离这块,网上搜索了一下,写了个程序,是测试曼哈顿距离的. 曼哈顿距离:两点(x1,y1)(x2,y2)的曼哈顿距离为|x1-x2|+|y1-y2| ...

随机推荐

  1. readhat6.5下安装weblogic10.3.6

    转载自:http://www.mianhuage.com/752.html 1.安装前准备 1.1.准备安装包generic.jar1.2.创建weblogic用户及用户组创建组命令:groupadd ...

  2. 有关Servlet的面试题

    CGI(Common Gateway Interface),通用网管接口 通用网管接口,简称CGI,是一种根据请求信息动态产生回应内容的技术.通过CGI,web服务器可以根据请求的不同,启动不同的外部 ...

  3. newbee-mall 开源商城新计划:秒杀功能、优惠券、对接支付宝

    新项目是 newbee-mall 的升级版本,暂时就叫它 newbee-mall-plus 吧,第一阶段会开发秒杀功能.优惠券.对接支付宝这些功能,也会慢慢加入 Redis. Elastic Sear ...

  4. 【Linux】Linux介绍和安装 - 测试题

    第一部分测试题 Linux介绍和安装 测试题 做点练习题,巩固一下咯~ ~ _ 10 个选择题. 1.让我们选择开机时进哪个操作系统的软件叫什么? A. booter B. bootloader C. ...

  5. 【Linux】linux的所有文件分类解析

    今天看书的时候,无意间看到/dev/文件夹,以前没注意,今天去看了下发现,很多文件的开头文件属性都是一些不怎么见到的 常见的是   -     这个是代表文件,可以vim编辑的 d     这个是代表 ...

  6. EnvironmentPostProcessor怎么做单元测试?阿里P7解答

    简介 从Spring Boot 1.3开始,我们可以在应用程序上下文刷新之前使用EnvironmentPostProcessor来自定义应用程序的Environment.Environment表示当前 ...

  7. 使用Spring的RestTemplate进行接口调用

    引自:http://www.zimug.com/ 1.常见的http服务的通信方式 经常使用的方式有HttpClient.OkHttp.RestTemplate.其中RestTemplate是一种更优 ...

  8. Qt Undo Framework

    Qt undo/redo 框架 基于Command设计模式 支持命令压缩和命令合成 提供了与工具包其他部分融合很好的widgets和actions 术语(Terminology) Command - ...

  9. linux GPU上多个buffer间的同步 —— ww_mutex、dma-fence的使用 笔记

    原文链接:https://www.cnblogs.com/yaongtime/p/14111134.html   WW-Mutexes   在GPU中一次Render可能会涉及到对多个buffer的引 ...

  10. NoClassDefFoundError: javax/xml/bind/DatatypeConverter错误原因以及解决办法

    nested exception is java.lang.NoClassDefFoundError: javax/xml/bind/DatatypeConverter 报错内容: org.sprin ...