poj2926Requirements (曼哈顿距离)
Description
An undergraduate student, realizing that he needs to do research to improve his chances of being accepted to graduate school, decided that it is now time to do some independent research. Of course, he has decided to do research in the most important domain:
the requirements he must fulfill to graduate from his undergraduate university. First, he discovered (to his surprise) that he has to fulfill 5 distinct requirements: the general institute requirement, the writing requirement, the science requirement, the
foreign-language requirement, and the field-of-specialization requirement. Formally, a requirement is a fixed number of classes that he has to take during his undergraduate years. Thus, for example, the foreign language requirement specifies that the student
has to take 4 classes to fulfill this requirement: French I, French II, French III, and French IV. Having analyzed the immense multitude of the classes that need to be taken to fulfill the different requirements, our student became a little depressed about
his undergraduate university: there are so many classes to take…
Dejected, the student began studying the requirements of other universities that he might have chosen after high school. He found that, in fact, other universities had exactly the same 5 requirements as his own university. The only difference was that different
universities had different number of classes to be satisfied in each of the five requirement.
Still, it appeared that universities have pretty similar requirements (all of them require a lot of classes), so he hypothesized that no two universities are very dissimilar in their requirements. He defined the dissimilarity of two universities X and Y as
|x1 − y1| + |x2 − y2| + |x3 − y3| + |x4 − y4| + |x5 − y5|,
where an xi (yi) is the number of classes in the requirement i of university X (Y) multiplied by an appropriate factor that measures hardness of the corresponding requirement at the corresponding
university.
Input
The first line of the input file contains an integer N (1 ≤ N ≤ 100 000), the number of considered universities. The following N lines each describe the requirements of a university. A university X is described by the
five non-negative real numbers x1 x2 x3 x4 x5.
Output
On a single line, print the dissimilarity value of the two most dissimilar universities. Your answer should be rounded to exactly two decimal places.
Sample Input
3
2 5 6 2 1.5
1.2 3 2 5 4
7 5 3 2 5
Sample Output
12.80
题意:在五维坐标系下求n个点中两个点的最大曼哈顿距离。
思路:以二维坐标系为例,(x1,y1)(x2,y2)之间的距离为|x1-x2|+|y1-y2|,可能取±(x1-x2)±(y1-y2),且其他情况下算出来的关于这两个点的最大距离肯定比正确算曼哈顿距离的值小(去掉绝对值符号了)。我们可以把同一个坐标的放在一起,变为(±x1±y1)-(±x2±y2)。(注:这里x1和x2前面的符号是一致的,y1和y2前面的符号是一致的,这样才能保证对应值仍保持相减关系)。所以我们只要枚举每一维的分量前面的符号即可,然后求出每一个符号分量状态的最大值和最小值的差,更新最大值就行。
下面给出n维的模板(时间复杂度为O(n*dem*2^dem)
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 100050
#define dem 5
struct node{
double p[dem+1];
}a[maxn];
double maxx[1<<dem],minx[1<<dem];
int main()
{
int n,m,i,j,state,t;
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++){
for(j=1;j<=dem;j++){
scanf("%lf",&a[i].p[j]);
}
}
for(state=0;state<(1<<dem);state++){
maxx[state]=-inf;
minx[state]=inf;
}
double ans=0;
for(state=0;state<(1<<dem);state++){
for(i=1;i<=n;i++){
double cnt=0;
for(t=1;t<=dem;t++){
if(state&(1<<(t-1)) ){
cnt+=a[i].p[t];
}
else{
cnt-=a[i].p[t];
}
}
maxx[state]=max(maxx[state],cnt);
minx[state]=min(minx[state],cnt);
}
ans=max(ans,maxx[state]-minx[state]);
}
printf("%.2f\n",ans);
}
return 0;
}
poj2926Requirements (曼哈顿距离)的更多相关文章
- Hdu4311 || 4312Meeting point-1/-2 n个点中任意选一个点使得其余点到该点曼哈顿距离之和最小
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...
- Atitti knn实现的具体四个距离算法 欧氏距离、余弦距离、汉明距离、曼哈顿距离
Atitti knn实现的具体四个距离算法 欧氏距离.余弦距离.汉明距离.曼哈顿距离 1. Knn算法实质就是相似度的关系1 1.1. 文本相似度计算在信息检索.数据挖掘.机器翻译.文档复制检测等领 ...
- 【POJ 3241】Object Clustering 曼哈顿距离最小生成树
http://poj.org/problem?id=3241 曼哈顿距离最小生成树模板题. 核心思想是把坐标系转3次,以及以横坐标为第一关键字,纵坐标为第二关键字排序后,从后往前扫.扫完一个点就把它插 ...
- 【HDU 4311】Meeting point-1(前缀和求曼哈顿距离和)
题目链接 正经解法: 给定n个点的坐标,找一个点,到其他点的曼哈顿距离之和最小.n可以是100000.大概要一个O(nlogn)的算法.算曼哈顿距离可以把x和y分开计算排好序后计算前缀和就可以在O(1 ...
- hdu4666 Hyperspace ——曼哈顿距离
link:http://acm.hdu.edu.cn/showproblem.php?pid=4666 这题学会了怎么处理曼哈顿距离. 比如维数是k,那么每个点有2^k个状态,求出在每个状态下,所有点 ...
- hdu 4666:Hyperspace(最远曼哈顿距离 + STL使用)
Hyperspace Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Tota ...
- poj 2926:Requirements(最远曼哈顿距离,入门题)
Requirements Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3908 Accepted: 1318 Desc ...
- 某个点到其他点的曼哈顿距离之和最小(HDU4311)
Meeting point-1 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4539 郑厂长系列故事――排兵布阵(曼哈顿距离)
这虽然是中文题,然而没看懂,不懂的地方,就是在曼哈顿距离这块,网上搜索了一下,写了个程序,是测试曼哈顿距离的. 曼哈顿距离:两点(x1,y1)(x2,y2)的曼哈顿距离为|x1-x2|+|y1-y2| ...
随机推荐
- 【SpringBoot1.x】SpringBoot1.x 开发热部署和监控管理
SpringBoot1.x 开发热部署和监控管理 热部署 在开发中我们修改一个 Java 文件后想看到效果不得不重启应用,这导致大量时间花费,我们希望不重启应用的情况下,程序可以自动部署(热部署). ...
- 关于SSRF与CSRF漏洞的解释
目录 SSRF服务端请求伪造(外网访问内网) 1.SSRF形成原因 2.利用SSRF漏洞的目的 3.SSRF漏洞的用途 4.SSRF漏洞的特性 实例 5.如何挖掘SSRF漏洞 6.常用SSRF去做什么 ...
- Puzzle (II) UVA - 519
题目链接: https://vjudge.net/problem/UVA-519 思路: 剪枝+回溯 这个题巧妙的是他按照表格的位置开始搜索,也就是说表格是定的,他不断用已有的图片从(0,0)开始拼到 ...
- C# url的编码解码,xml和json的序列化和反序列化
参考中国慕课网dot net web编程应用程序实践 using System; using System.Collections.Generic; using System.IO; using Sy ...
- Pku1236 Network of Schools
题目描述 n个学校构成一个有向图,通过m条边连接,一:问至少向图中多少个学校投放软件,可以使得所有学校直接或者间接的通过边(假设存在边(u,v),则向u投放v可以得到,而向v投放u不能通过v直接得到) ...
- 求得二叉搜索树的第k小的元素
求得二叉搜索树的第k小的元素 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 须知:二叉搜索树,又叫二叉排序树,二叉查找树.特点是:左子树的所有元素都小于等 ...
- Android iText向pdf模板插入数据和图片
一.需求 这些日志在写App程序,有这么一个需求,就是需要生成格式统一的一个pdf文件,并向固定表格中填充数据,并且再在pdf中追加两页图片. 二.方案 手工设计一个pdf模板,这个具体步骤就不再赘述 ...
- winform 添加背景图 闪屏问题解决
winform中只要添加了背景图片资源,窗体加载显示的时候就会出现不停的闪屏操作,网上找了很多方法,效果都不明显: 然后自己观察和思路:看窗体的加载过程,当有背景图的时候,首先出来的是背景图,之后背景 ...
- 2、fork函数与进程ID
1. fork函数 fork函数用于克隆一份当前的进程资源,调用fork函数之后,进程一分为二,并且两个进程的资源是一样的(只是资源内容完全一样,并不是同一份资源).fork函数的函数原型为:pid_ ...
- Devexpress DockManager多页面浮动窗口会关闭所有页面的问题
注册 DockManager 的 ClosingPanel 事件 private void DockManager1_ClosingPanel(object sender, DockPanelCanc ...