Description

An undergraduate student, realizing that he needs to do research to improve his chances of being accepted to graduate school, decided that it is now time to do some independent research. Of course, he has decided to do research in the most important domain:
the requirements he must fulfill to graduate from his undergraduate university. First, he discovered (to his surprise) that he has to fulfill 5 distinct requirements: the general institute requirement, the writing requirement, the science requirement, the
foreign-language requirement, and the field-of-specialization requirement. Formally, a requirement is a fixed number of classes that he has to take during his undergraduate years. Thus, for example, the foreign language requirement specifies that the student
has to take 4 classes to fulfill this requirement: French I, French II, French III, and French IV. Having analyzed the immense multitude of the classes that need to be taken to fulfill the different requirements, our student became a little depressed about
his undergraduate university: there are so many classes to take…

Dejected, the student began studying the requirements of other universities that he might have chosen after high school. He found that, in fact, other universities had exactly the same 5 requirements as his own university. The only difference was that different
universities had different number of classes to be satisfied in each of the five requirement.

Still, it appeared that universities have pretty similar requirements (all of them require a lot of classes), so he hypothesized that no two universities are very dissimilar in their requirements. He defined the dissimilarity of two universities X and Y as
|x1 − y1| + |x2 − y2| + |x3 − y3| + |x4 − y4| + |x5 − y5|,
where an xi (yi) is the number of classes in the requirement i of university X (Y) multiplied by an appropriate factor that measures hardness of the corresponding requirement at the corresponding
university.

Input

The first line of the input file contains an integer N (1 ≤ N ≤ 100 000), the number of considered universities. The following N lines each describe the requirements of a university. A university X is described by the
five non-negative real numbers x1 x2 x3 x4 x5.

Output

On a single line, print the dissimilarity value of the two most dissimilar universities. Your answer should be rounded to exactly two decimal places.

Sample Input

3
2 5 6 2 1.5
1.2 3 2 5 4
7 5 3 2 5

Sample Output

12.80

题意:在五维坐标系下求n个点中两个点的最大曼哈顿距离。

思路:以二维坐标系为例,(x1,y1)(x2,y2)之间的距离为|x1-x2|+|y1-y2|,可能取±(x1-x2)±(y1-y2),且其他情况下算出来的关于这两个点的最大距离肯定比正确算曼哈顿距离的值小(去掉绝对值符号了)。我们可以把同一个坐标的放在一起,变为(±x1±y1)-(±x2±y2)。(注:这里x1和x2前面的符号是一致的,y1和y2前面的符号是一致的,这样才能保证对应值仍保持相减关系)。所以我们只要枚举每一维的分量前面的符号即可,然后求出每一个符号分量状态的最大值和最小值的差,更新最大值就行。

下面给出n维的模板(时间复杂度为O(n*dem*2^dem)

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 100050
#define dem 5
struct node{
double p[dem+1];
}a[maxn];
double maxx[1<<dem],minx[1<<dem]; int main()
{
int n,m,i,j,state,t;
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++){
for(j=1;j<=dem;j++){
scanf("%lf",&a[i].p[j]);
}
}
for(state=0;state<(1<<dem);state++){
maxx[state]=-inf;
minx[state]=inf;
}
double ans=0;
for(state=0;state<(1<<dem);state++){
for(i=1;i<=n;i++){
double cnt=0;
for(t=1;t<=dem;t++){
if(state&(1<<(t-1)) ){
cnt+=a[i].p[t];
}
else{
cnt-=a[i].p[t];
}
}
maxx[state]=max(maxx[state],cnt);
minx[state]=min(minx[state],cnt);
}
ans=max(ans,maxx[state]-minx[state]);
}
printf("%.2f\n",ans);
}
return 0;
}

poj2926Requirements (曼哈顿距离)的更多相关文章

  1. Hdu4311 || 4312Meeting point-1/-2 n个点中任意选一个点使得其余点到该点曼哈顿距离之和最小

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

  2. Atitti knn实现的具体四个距离算法 欧氏距离、余弦距离、汉明距离、曼哈顿距离

    Atitti knn实现的具体四个距离算法  欧氏距离.余弦距离.汉明距离.曼哈顿距离 1. Knn算法实质就是相似度的关系1 1.1. 文本相似度计算在信息检索.数据挖掘.机器翻译.文档复制检测等领 ...

  3. 【POJ 3241】Object Clustering 曼哈顿距离最小生成树

    http://poj.org/problem?id=3241 曼哈顿距离最小生成树模板题. 核心思想是把坐标系转3次,以及以横坐标为第一关键字,纵坐标为第二关键字排序后,从后往前扫.扫完一个点就把它插 ...

  4. 【HDU 4311】Meeting point-1(前缀和求曼哈顿距离和)

    题目链接 正经解法: 给定n个点的坐标,找一个点,到其他点的曼哈顿距离之和最小.n可以是100000.大概要一个O(nlogn)的算法.算曼哈顿距离可以把x和y分开计算排好序后计算前缀和就可以在O(1 ...

  5. hdu4666 Hyperspace ——曼哈顿距离

    link:http://acm.hdu.edu.cn/showproblem.php?pid=4666 这题学会了怎么处理曼哈顿距离. 比如维数是k,那么每个点有2^k个状态,求出在每个状态下,所有点 ...

  6. hdu 4666:Hyperspace(最远曼哈顿距离 + STL使用)

    Hyperspace Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  7. poj 2926:Requirements(最远曼哈顿距离,入门题)

    Requirements Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3908   Accepted: 1318 Desc ...

  8. 某个点到其他点的曼哈顿距离之和最小(HDU4311)

    Meeting point-1 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. HDU 4539 郑厂长系列故事――排兵布阵(曼哈顿距离)

    这虽然是中文题,然而没看懂,不懂的地方,就是在曼哈顿距离这块,网上搜索了一下,写了个程序,是测试曼哈顿距离的. 曼哈顿距离:两点(x1,y1)(x2,y2)的曼哈顿距离为|x1-x2|+|y1-y2| ...

随机推荐

  1. 计算机考研复试真题 abc

    题目描述 设a.b.c均是0到9之间的数字,abc.bcc是两个三位数,且有:abc+bcc=532.求满足条件的所有a.b.c的值. 输入描述: 题目没有任何输入. 输出描述: 请输出所有满足题目条 ...

  2. redis之集群一:主从

    Redis的三种集群模式 Redis有三种集群模式,第一个就是主从模式,第二种"哨兵"模式,第三种是Cluster集群模式,第三种的集群模式是在Redis 3.x以后的版本才增加进 ...

  3. 【Linux】Linux基础命令 - 目录相关的命令 ls 、cd、du

    文章目录 目录相关的命令 ls 命令:列出文件和目录 cd 命令:切换目录 du 命令:显示目录包含的文件大小 总结 参考资料 巩固和复习Linux系统基础命令知识 目录相关的命令 ls 命令:列出文 ...

  4. explain extended;show warnings

    mysql> explain extended select count(*) from xuehao;+----+-------------+-------+------+---------- ...

  5. PW6513高压40V的LDO芯片,SOT89封装

    一般说明 PW6513系列是一款高精度,高输入电压,低静态电流,高速,低具有高纹波抑制的线性稳压器.输入电压高达40V,负载电流为在电压=5V和VIN=7V时高达300mA.该设备采用BCD工艺制造. ...

  6. linux自定义位置安装tomcat8.5

    1 下载tomcat安装文件 下载地址:https://tomcat.apache.org/download-80.cgi  2 解压文件 tar -zxvf apache-tomcat-8.5.56 ...

  7. LocalDateTime去掉T

    最近在使用阿里巴巴的fastjson反序列化对象的时候,对象里面时间格式属性总是会多了一个T  2021-1-09T18:29:09.097 这个T是啥国际标准,但是我们的前端又不需要这个T,所以就要 ...

  8. git的使用学习笔记---合并分支

    一.使用场景 不同的分支需要合并 二.操作 1.首先要创建一个分支 git checkout -b mergedemo 创建文本 vim text.txt 添加文本 git add text.txt ...

  9. detect data races The cost of race detection varies by program, but for a typical program, memory usage may increase by 5-10x and execution time by 2-20x.

    小结: 1. conflicting access 2.性能危害 优化 The cost of race detection varies by program, but for a typical ...

  10. 防sql注入之参数绑定 SQL Injection Attacks and Defense 预处理语句与存储过程

    http://php.net/manual/zh/pdo.prepared-statements.php 预处理语句与存储过程 很多更成熟的数据库都支持预处理语句的概念.什么是预处理语句?可以把它看作 ...