初始化硬解码上下文

创建解码数据缓冲区

这一步为了得到 LPDIRECT3DSURFACE9* 实例 m_pSurface,就是之前说过的那个数组。

// m_surfaceNums 为希望创建的缓冲区个数,单路视频一个就够了,太多可能显存不够用
m_pSurface = (LPDIRECT3DSURFACE9*)av_mallocz(m_surfaceNums * sizeof(LPDIRECT3DSURFACE9));
if (!m_pSurface)
{
return FALSE;
} // 字节对齐
int surfaceAlignment = 0;
if (pCodecCtx->codec_id == AV_CODEC_ID_MPEG2VIDEO)
{
surfaceAlignment = 32;
}
else if (pCodecCtx->codec_id == AV_CODEC_ID_HEVC)
{
surfaceAlignment = 128;
}
else
{
surfaceAlignment = 16;
} // 创建缓冲区
HRESULT hr = m_pDecoderService->CreateSurface(
FFALIGN(pCodecCtx->coded_width, surfaceAlignment), // 缓冲区宽
FFALIGN(pCodecCtx->coded_height, surfaceAlignment), // 缓冲区高
m_surfaceNums, // 缓冲区个数,这里可以设置为0,CreateVideoDecoder里面会重新设置个数
m_renderFormat, // 缓冲区格式
D3DPOOL_DEFAULT, // 缓冲区位置,D3DPOOL_DEFAULT--显存
0, // 资源如何被使用
DXVA2_VideoDecoderRenderTarget, // 缓冲区为视频解码器渲染目标
m_pSurface, // 缓冲区数组指针
NULL); // 保留字 if (FAILED(hr))
{
return FALSE;
}

创建IDirectXVideoDecoder视频解码器

  1. 获取当前GPU支持的解码能力等级和渲染格式
BOOL GetDxva2FormatAndGuid(AVCodecContext *pCodecCtx, GUID & guid, D3DFORMAT & fmt)
{
// 获取当前设备支持的解码标准等级标识列表
GUID *guidList = NULL;
unsigned guidCount = 0; HRESULT hr = m_pDecoderService->GetDecoderDeviceGuids(&guidCount, &guidList);
if (FAILED(hr))
{
VX_LOG_ERROR("Get hardware acclerate device guids failed!");
return FALSE;
} for (int i = 0; ; i++)
{
if (NULL == guid2AVCodecID[i].guidID)
{
// 查到最后一个了直接退出循环
break;
} const Guid2CodecID *mode = &guid2AVCodecID[i]; if (mode->codecID == pCodecCtx->codec_id)
{
for (uint32_t j = 0; j < guidCount; j++)
{
if (IsEqualGUID(*mode->guidID, guidList[j]))
{
// 获取当前解码标准下渲染器目标格式数组
D3DFORMAT *targetList = NULL;
UINT targetCount = 0;
hr = m_pDecoderService->GetDecoderRenderTargets(*mode->guidID, &targetCount, &targetList);
if (FAILED(hr))
{
VX_LOG_ERROR("Get support render format failed!");
return FALSE;
} for (uint32_t j = 0; j < targetCount; j++)
{
if (targetList[j] == MKTAG('N', 'V', '1', '2'))
{
fmt = targetList[j];
guid = *mode->guidID;
break;
}
}
// 释放内存资源
CoTaskMemFree(targetList);
}
}
}
} CoTaskMemFree(guidList); if (D3DFMT_UNKNOWN == fmt || GUID_NULL == guid)
{
return FALSE;
}
else
{
return TRUE;
}
}
  1. 获取当前解码等级下的配置信息
void CDxva2Decode::GetDecoderCfg(AVCodecContext *pCodecCtx, const GUID *pGuid,
const DXVA2_VideoDesc *pDesc, DXVA2_ConfigPictureDecode *pCfg)
{
unsigned cfgCount = 0, bestScore = 0;
DXVA2_ConfigPictureDecode *cfgList = NULL; HRESULT hr = m_pDecoderService->GetDecoderConfigurations(*pGuid, pDesc, NULL, &cfgCount, &cfgList); for (uint32_t i = 0; i < cfgCount; i++)
{
DXVA2_ConfigPictureDecode cfg = cfgList[i]; unsigned score; if (cfg.ConfigBitstreamRaw == 1)
{
score = 1;
}
else if (pCodecCtx->codec_id == AV_CODEC_ID_H264 && cfg.ConfigBitstreamRaw == 2)
{
score = 2;
}
else
{
continue;
} if (IsEqualGUID(cfg.guidConfigBitstreamEncryption, DXVA2_NoEncrypt))
{
score += 16;
} if (score > bestScore)
{
bestScore = score;
*pCfg = cfg;
}
} CoTaskMemFree(cfgList);
}
  1. 这一步为了得到 IDirectXVideoDecoder* 实例 m_pDxva2Decoder,亦即硬件解码器。
if (!GetDxva2FormatAndGuid(pCodecCtx, m_decoderGuid, m_renderFormat))
{
// 不支持DXVA2加速
VX_LOG_ERROR("Do not support Dxva2!");
return FALSE;
} // 设置解码后的格式
DXVA2_VideoDesc desc = { 0 };
desc.SampleWidth = pCodecCtx->coded_width;
desc.SampleHeight = pCodecCtx->coded_height;
desc.Format = m_renderFormat; // 获取支持的配置
GetDecoderCfg(pCodecCtx, &m_decoderGuid, &desc, &m_config); // 创建解码器设备
HRESULT hr = m_pDecoderService->CreateVideoDecoder(m_decoderGuid, // 设备标识符
&desc, // 视频内容描述
&m_config, // 解码器配置
m_pSurface, // 渲染目标数组指针(解码后的数据写到这里)
m_surfaceNums, // 渲染目标数,必须大于0,
&m_pDxva2Decoder); // 解码器 if (FAILED(hr))
{
return FALSE;
}

设置硬解码上下文

// 这一步为了将解码缓冲区数组传给GetBufferCallBack回调函数
pCodecCtx->opaque = m_pSurface; // 设置回调
pCodecCtx->get_buffer2 = GetBufferCallBack;
pCodecCtx->get_format = GetHwFormat; // 单路视频启动多线程解码,理解是启用多个线程将待解码数据送往GPU,因为数据从内存到显存比较慢
pCodecCtx->thread_safe_callbacks = TRUE;
pCodecCtx->thread_count = 2; // 为解码器上下文申请硬件加速内存
pCodecCtx->hwaccel_context = av_mallocz(sizeof(struct dxva_context));
if (!pCodecCtx->hwaccel_context)
{
return FALSE;
} // 设置硬件加速上下文
struct dxva_context *dxva2Ctx = (dxva_context *)pCodecCtx->hwaccel_context;
dxva2Ctx->cfg = &m_config;
dxva2Ctx->decoder = m_pDecoder;
dxva2Ctx->surface = m_pSurface;
dxva2Ctx->surface_count = m_surfaceNums; // 对老的intel GPU 的支持
if (IsEqualGUID(m_decoderGuid, DXVADDI_Intel_ModeH264_E))
{
dxva2Ctx->workaround |= FF_DXVA2_WORKAROUND_INTEL_CLEARVIDEO;
}

解码回调函数

  1. 解码输出格式回调
static AVPixelFormat GetHwFormat(AVCodecContext * pCodecCtx, const AVPixelFormat * pPixFmt)
{
// 因为采用的是DXVA2,所以这里直接写死了
return AV_PIX_FMT_DXVA2_VLD;
}
  1. 解码数据回调

    此时解码后的数据放在解码缓冲数组里面,这里数组大小为1。单路视频时 pFrame 地址为两个固定地址切换,这些应该都是FFmpeg内部实现的。这里理解的不清楚,希望大神可以指点。

// 个人理解就是将LPDIRECT3DSURFACE9转为(uint8_t *),同时得保证内存不会立即被释放
static int GetBufferCallBack(AVCodecContext * pCodecCtx, AVFrame * pFrame, int flags)
{
if (pFrame->format != AV_PIX_FMT_DXVA2_VLD)
{
return -1;
} // 获取解码后的数据,出于安全性不可直接访问,这一步没有内存拷贝
LPDIRECT3DSURFACE9 surface = ((LPDIRECT3DSURFACE9*)(pCodecCtx->opaque))[0]; // 将LPDIRECT3DSURFACE9转为AVBuffer,内存地址不变,并返回AVBufferRef,并返回AVBufferRef供FFmpeg内部使用,这一步应该发生了内存拷贝
// 类似于智能指针,增加对surface的引用计数,当计数为0时FFmpeg会认为该帧数据丢弃掉。默认使用av_buffer_default_free释放,
pFrame->buf[0] = av_buffer_create((uint8_t*)surface, 0, nullptr, nullptr, AV_BUFFER_FLAG_READONLY);
if (!pFrame->buf[0])
{
return AVERROR(ENOMEM);
} // 这一步拿到最终可以显示的数据,必须是data[3],此时surface应该是AVBuffer
pFrame->data[3] = (uint8_t *)surface; return 0;
}

[参考链接]:(http://www.cnblogs.com/betterwgo/p/6125507.html)

基于FFmpeg的Dxva2硬解码及Direct3D显示(四)的更多相关文章

  1. 基于FFmpeg的Dxva2硬解码及Direct3D显示(一)

    目录 前言 名词解释 代码实现逻辑 前言 关于视频软解码的资料网上比较多了,但是关于硬解可供参考的资料非常之有限,虽然总得来说软解和硬解的基本逻辑一样,但是实现细节上的差别还是比较多的.虽然目前功能已 ...

  2. 基于FFmpeg的Dxva2硬解码及Direct3D显示(五)

    解码及显示 目录 解码及显示 解码 显示 资源清理 解码 循环读取视频帧 AVPacket packet = { 0 }; while (av_read_frame(m_pFmtCtx, &p ...

  3. 基于FFmpeg的Dxva2硬解码及Direct3D显示(三)

    初始化Direct3D 目录 初始化Direct3D 创建Direct3D物理设备对象实例 创建Direct3D渲染设备实例 创建Direct3D视频解码服务 Direct3D渲染可以通过Surfac ...

  4. 基于FFmpeg的Dxva2硬解码及Direct3D显示(二)

    解析视频源 目录 解析视频源 获取视频流 解析视频流 说明:这篇博文分为"获取视频流"和"解析视频流"两个部分,使用的是FFmpeg4.1的版本,与网上流传的低 ...

  5. 使用C#+FFmpeg+DirectX+dxva2硬件解码播放h264流

    本文门槛较高,因此行文看起来会乱一些,如果你看到某处能会心一笑请马上联系我开始摆龙门阵 如果你跟随这篇文章实现了播放器,那你会得到一个高效率,低cpu占用(单路720p视频解码播放占用1%左右cpu) ...

  6. 【视频开发】 ffmpeg支持的硬解码接口

    To enable DXVA2, use the --enable-dxva2 ffmpeg configure switch. To test decoding, use the following ...

  7. [原]ffmpeg编译android 硬解码支持库 libstagefright

    最近花了一天时间将ffmpeg/tools/build_stagefright执行成功,主要是交叉编译所需要的各种动态库的支持没链接上,导致各种报错,基本上网络上问到的问题我都碰到了,特此记录下来. ...

  8. 【并行计算与CUDA开发】基于NVIDIA显卡的硬编解码的一点心得 (完结)

    原文:基于NVIDIA显卡的硬编解码的一点心得 (完结) 1.硬解码软编码方法:大体流程,先用ffmpeg来读取视频文件的包,接着开启两个线程,一个用于硬解码,一个用于软编码,然后将读取的包传给解码器 ...

  9. 最简单的基于FFMPEG的封装格式转换器(无编解码)

    本文介绍一个基于FFMPEG的封装格式转换器.所谓的封装格式转换,就是在AVI,FLV,MKV,MP4这些格式之间转换(相应.avi,.flv,.mkv,.mp4文件).须要注意的是,本程序并不进行视 ...

随机推荐

  1. 多测师讲解python_模块(导入模块和内置模块)_高级讲师肖sir

    #自定义模块# from aaa import * #指定导入某个包中具体的类.函数.方法## A.fun1(2,2) #import +模块名 :# # import +模块名+.+.+# # 导入 ...

  2. 分布式系统中的CAP、ACID、BASE概念

    目录 CAP ACID BASE CAP 分布式系统中,这三个特性只能满足其中两个. 一致性(Consistency):分布式中一致性又分强一致性和弱一致性,强一致性主浊任何时刻任何节点看到的数据都是 ...

  3. python并发编程之多进程(实践篇) 转

    一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程.Python提供了multiproce ...

  4. Chimm.Excel —— 使用Java 操作 excel 模板文件生成 excel 文档

    Chimm.Excel -- 设置模板,填充数据,就完事儿了~ _____ _ _ _____ _ / __ \ | (_) | ___| | | | / \/ |__ _ _ __ ___ _ __ ...

  5. Redis入门之认识redis(一)

    第1章 非关系型数据库 1.1 NoSQL数据库概述 1) NoSQL(NoSQL = Not Only SQL ),意即"不仅仅是SQL",泛指非关系型的数据库. NoSQL 不 ...

  6. 使用websocket连接(对接)asp.net core signalr

    使用通用websocket连接asp.net core signalr 一.背景介绍 signalr的功能很强大,可以为我们实现websocket服务端节省不少的时间.但是可能由于不同的环境,我们在对 ...

  7. net core 微服务框架 Viper 调用链路追踪

    1.Viper是什么? Viper 是.NET平台下的Anno微服务框架的一个示例项目.入门简单.安全.稳定.高可用.全平台可监控.底层通讯可以随意切换thrift grpc. 自带服务发现.调用链追 ...

  8. 常用的实现Javaweb页面跳转的方式

    我们有两大种方式来实现页面跳转:1.JS(javascript):2.jsp跳转 先说jsp(金j三s胖p):1.转发:request.getRequestDispatcher("1.jsp ...

  9. Netty源码解析 -- 服务端启动过程

    本文通过阅读Netty源码,解析Netty服务端启动过程. 源码分析基于Netty 4.1 Netty是一个高性能的网络通信框架,支持NIO,OIO等多种IO模式.通常,我们都是使用NIO模式,该系列 ...

  10. python实现经典的排序算法

    排序 关注公众号"轻松学编程"了解更多. 1.冒泡排序 基本思想:比较相邻的元素大小,将小的前移,大的后移,就像水中的气泡一样,最小的元素经过几次移动,会最终浮到水面上.原地排序, ...