题意描述

在无向图中求一条从 \(1\) 到 \(N\) 的路径,使得路径上第 \(K+1\) 大的边权最小。

等等,最大的最小...如此熟悉的字眼,难道是 二分答案

下面进入正题。

算法分析

没错就是酱紫,二分这个第 \(K+1\) 大的边权的值,设这条边的边权为 \(val\) 那么:

\[ edge[i]=\left\{
\begin{array}{rcl}
0 & & {edge[i] \leq val}\\
1 & & {edge[i] > val}\
\end{array} \right. \]

然后就跑一遍最短路(01 图的最短路可以用双端队列优化来跑)。

\[ find=\left\{
\begin{array}{rcl}
[l,val] & & {dis[N] \leq k}\\
[val+1,r] & & {dis[N] > k}\
\end{array} \right. \]

这样就确定了寻找范围,然后就结束了...

记得初始化时 \(l=-1\),避免误解情况误判。

代码实现

#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
#include<deque>
#define N 1010
#define M 10010
using namespace std; int n,p,k,head[N],cnt=0,dis[N];
bool vis[N];
struct Edge{
int next,to,val;
}edge[M<<1];
deque<int>q; int read(){
int x=0,f=1;char c=getchar();
while(c<'0' || c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0' && c<='9') x=x*10+c-48,c=getchar();
return x*f;
} void addedge(int x,int y,int z){
cnt++;
edge[cnt].next=head[x];
edge[cnt].to=y;
edge[cnt].val=z;
head[x]=cnt;
return;
} bool chck(int x){
while(!q.empty()) q.pop_front();
memset(vis,false,sizeof(vis));
memset(dis,0,sizeof(dis));
dis[1]=0;vis[1]=true;
q.push_front(1);
while(!q.empty()){
int now=q.front();
q.pop_front();
for(int i=head[now];i;i=edge[i].next){
int y=edge[i].to;
int z=edge[i].val<=x?0:1;
if(!vis[y] || dis[y]>=dis[now]+1)
if(!z){
dis[y]=dis[now];
q.push_front(y);
vis[y]=true;
}
else{
dis[y]=dis[now]+1;
q.push_back(y);
vis[y]=true;
}
}
}
if(dis[n]<=k) return true;
return false;
} int main(){
n=read();p=read();k=read();
int mx=0,x,y,z;
for(int i=1;i<=p;i++){
x=read();y=read();z=read();
addedge(x,y,z);
addedge(y,x,z);
mx=max(mx,z);
}
int l=-1,r=mx,mid;
while(l<r){
int mid=(l+r)>>1;
if(chck(mid)) r=mid;
else l=mid+1;
}
printf("%d\n",l);
return 0;
}

还是很简单,所以并没有总结。

完结撒花。

P1948 [USACO08JAN]Telephone Lines S的更多相关文章

  1. Luogu P1948 [USACO08JAN]Telephone Lines

    题目 两眼题 二分一个\(lim\),然后跑最短路(边权\(\le lim\)的边长度为\(0\),\(>lim\)的长度为\(1\)),然后判断\(dis_{1,n}\le k\). #inc ...

  2. [USACO08JAN]Telephone Lines

    嘟嘟嘟 题意概括一下,就是在无向图上求一条1到n的路径,使路径上第k + 1大的边权尽量小. 考虑dp,令dp[i][j] 表示走到节点 i,路线上有 j 条电话线免费时,路径上最贵的电缆花费最小是多 ...

  3. POJ3662 [USACO08JAN]Telephone Lines (二分答案/分层图求最短路)

    这道题目有两种解法: 1.将每个点视为一个二元组(x,p),表示从起点到x有p条路径免费,相当于构建了一张分层图,N*k个节点,P*k条边.在这张图上用优先队列优化的SPFA算法求解,注意这里的d数组 ...

  4. 洛谷 P1948 [USACO08JAN]电话线Telephone Lines

    P1948 [USACO08JAN]电话线Telephone Lines 题目描述 Farmer John wants to set up a telephone line at his farm. ...

  5. 洛谷 P1948 [USACO08JAN]电话线Telephone Lines 题解

    P1948 [USACO08JAN]电话线Telephone Lines 题目描述 Farmer John wants to set up a telephone line at his farm. ...

  6. Luogu P1948 [USACO08JAN]电话线Telephone Lines(最短路+dp)

    P1948 [USACO08JAN]电话线Telephone Lines 题意 题目描述 Farmer John wants to set up a telephone line at his far ...

  7. 洛谷 P1948 [USACO08JAN]电话线Telephone Lines 最短路+二分答案

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 P1948 [USACO08JAN]电话线Telephone ...

  8. USACO Telephone Lines

    洛谷 P1948 [USACO08JAN]电话线Telephone Lines https://www.luogu.org/problem/P1948 JDOJ 2556: USACO 2008 Ja ...

  9. BZOJ1614: [Usaco2007 Jan]Telephone Lines架设电话线

    1614: [Usaco2007 Jan]Telephone Lines架设电话线 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 892  Solved: ...

随机推荐

  1. KEIL查看ARM-Cortex M架构soc的内核寄存器之 MSP

       参考下图stm32l475的参考手册: MSP指向地址基地址为0x20000000的内存处.参考STM32L475的memory map可知MSP指向的是SRAM的一块地址.并且由上面的编译信息 ...

  2. Arduino 寻找I2C地址address

    参考:http://henrysbench.capnfatz.com/henrys-bench/arduino-projects-tips-and-more/arduino-quick-tip-fin ...

  3. Python中list的合并

    ①差集 方法一: if __name__ == '__main__':     a_list = [{'a' : 1}, {'b' : 2}, {'c' : 3}, {'d' : 4}, {'e' : ...

  4. VMware ESXi 客户端连接控制台时,提示“VMRC 控制台连接已断开...正在尝试重新连接”的解决方法

    故障描述: 通过 VMware vSphere Client 连接到安装 VMware ESXi 虚拟环境的主机时,当启动其中的虚拟机后,无法连接到控制台. 选择"控制台"时,控制 ...

  5. 利用Python求解二元一次方程

    本程序流程如下: (1)输入A.B.C (2)计算△ (3)判断解的个数 (4)计算解 (5)输出解 求:x2-3x+2=0的解 #输入A.B.C A=float(input("输入A:&q ...

  6. Python爬虫框架--Scrapy安装以及简单实用

    scrapy框架 框架 ​ -具有很多功能且具有很强通用性的一个项目模板 环境安装: Linux: ​        pip3 install scrapy ​ ​ ​  Windows: ​     ...

  7. spring boot:解决cors跨域问题的两种方法(spring boot 2.3.2)

    一,什么是CORS? 1,CORS(跨域资源共享)(CORS,Cross-origin resource sharing), 它是一个 W3C 标准中浏览器技术的规范, 它允许浏览器向非同一个域的服务 ...

  8. zookeeper的管理功能

    一,查看当前zookeeper的版本 [liuhongdi@localhost ~]$ echo stat|nc 127.0.0.1 2181 Zookeeper version: 3.5.6-c11 ...

  9. centos8使用timedatectl管理时间

    一,centos8中默认使用chronyd来做时间服务 1,查看chronyd服务的状态 [root@blog ~]# systemctl status chronyd ● chronyd.servi ...

  10. Java9系列第6篇-Stream流API的增强

    我计划在后续的一段时间内,写一系列关于java 9的文章,虽然java 9 不像Java 8或者Java 11那样的核心java版本,但是还是有很多的特性值得关注.期待您能关注我,我将把java 9 ...